1.上海中医药大学附属龙华医院(上海 200032)
2.复旦大学附属儿科医院(上海 201102)
周嫦,女,在读硕士生,主要从事中西医结合治疗心血管疾病临床与基础研究
王佑华,主任医师,博士生导师;E-mail: doctorwyh@163.com
纸质出版日期:2024-07-25,
收稿日期:2023-03-15,
修回日期:2023-05-22,
扫 描 看 全 文
周嫦,彭珑萍,董艺丹等.决明子治疗高脂血症的网络药理学研究及斑马鱼实验验证[J].上海中医药大学学报,2024,38(04):71-80.
ZHOU Chang,PENG Longping,DONG Yidan,et al.Network pharmacology study of Cassiae Semen in treatment of hyperlipidemia and experimental validation in zebrafish[J].Academic Journal of Shanghai University of Traditional Chinese Medicine,2024,38(04):71-80.
周嫦,彭珑萍,董艺丹等.决明子治疗高脂血症的网络药理学研究及斑马鱼实验验证[J].上海中医药大学学报,2024,38(04):71-80. DOI: 10.16306/j.1008-861x.2024.04.010.
ZHOU Chang,PENG Longping,DONG Yidan,et al.Network pharmacology study of Cassiae Semen in treatment of hyperlipidemia and experimental validation in zebrafish[J].Academic Journal of Shanghai University of Traditional Chinese Medicine,2024,38(04):71-80. DOI: 10.16306/j.1008-861x.2024.04.010.
目的
2
基于网络药理学探讨决明子治疗高脂血症的作用机制,并通过斑马鱼实验进行验证。
方法
2
在中药分子机制生物信息学注释数据库(BATMAN-TCM)和中药系统药理学分析平台(TCMSP)检索并筛选决明子活性成分及相关靶点,通过GeneCards、DisGeNET、在线人类孟德尔遗传数据系统(OMIM)检索得到与高脂血症有关的靶点,利用Venny 2.1.0平台获得药物与疾病的共同靶点。使用Cytoscape3.8.2绘制决明子-活性成分-作用靶点网络图,采用String数据库构建蛋白质-蛋白质相互作用(PPI)网络图,将决明子-高脂血症共同靶点通过注释、可视化和集成发现数据库(DAVID)进行基因本体(GO)功能及京都基因与基因组百科全书(KEGG)通路富集分析。根据网络药理学研究结果,推测橙黄决明素(AO)为决明子降血脂的有效作用成分,在此基础上进行斑马鱼实验验证。以蛋黄液高脂饮食诱导斑马鱼高脂血症模型,造模后给予AO干预,验证AO治疗高脂血症的效果及作用机制。首先进行AO对高脂血症斑马鱼的毒性实验,确定AO最大给药浓度;后续观察AO对高脂血症斑马鱼总胆固醇(TC)、三酰甘油(TG)含量及肝脏组织形态学的影响;采用实时荧光定量PCR检测核心靶点mRNA在高脂血症斑马鱼中的表达。
结果
2
共获得包括AO在内的13个决明子活性成分,决明子作用于高脂血症的潜在靶点109个,包括核心靶点肿瘤坏死因子(TNF)、白介素(IL)-1β、前列腺素内过氧化物合酶2(PTGS2)、半胱氨酸天冬氨酸蛋白酶3(CASP3)、过氧化物酶体增殖物激活受体-γ(PPAR-γ)等,主要涉及IL-17信号通路、TNF信号通路、脂质和动脉粥样硬化相关作用通路等。斑马鱼验证实验结果显示:造模后斑马鱼出现明显的脂质聚积,AO可显著降低高脂血症斑马鱼组织中的TG、TC含量(
P
<
0.05,
P
<
0.01),减少肝脏组织内脂肪空泡和脂滴形成,并可显著下调核心靶点
TNF
-
α
、
IL
-
1β
mRNA表达(
P
<
0.01)。
结论
2
基于网络药理学获得了决明子治疗高脂血症的核心通路与靶点,并通过斑马鱼实验初步揭示AO对高脂血症的改善效果,其机制可能是通过TNF-α、IL-1β
等核心靶点发挥治疗作用,旨在为后期研究AO在高脂血症中的临床应用提供参考依据。
Objective: To investigate the mechanisms of Cassiae Semen in treating hyperlipidemia based on network pharmacology and be validated through zebrafish experiments.
Methods
2
The active ingredients and related targets of Cassiae Semen were searched and screened in the Bioinformatics Analysis Tool for Molecular Mechanisms of Traditional Chinese Medicine (BATMAN-TCM) and the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Hyperlipidemia-related target genes were obtained through searching GeneCards, DisGeNET and Online Mendelian Inheritance in man (OMIM). The common targets of drugs and diseases were obtained by Venny 2.1.0 platform. The Cassiae Semen-active ingredients-potential target network diagram was drawn by Cytoscape3.8.2, the protein-protein interaction (PPI) network diagram was constructed by String database, and the Cassiae Semen-hyperlipidemia common targets were subjected to Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis through
the Database for Annotation, Visualization and Integrated Discovery (DAVID). According to the results of the network pharmacology study, aurantio-obtusin
(AO) was hypothesized to be the effective acting component of Cassiae Semen in lowering blood lipids, and then the zebrafish experiments were carried out to verify based on above. The zebrafish hyperlipidemia model was induced by high-fat diet with egg yolk liquid, and was treated by AO after modeling, in order to verify the effect and mechanisms of AO in treating hyperlipidemia. Firstly, the toxicity experiment of AO on hyperlipidemic zebrafish was performed to determine the maximum administration concentration of AO. Subsequently, the effects of AO on total cholesterol (TC) and triglyceride (TG) contents and liver histomorphometry of hyperlipidemic zebrafish were observed. Quantitative real-time PCR was used to detect the expressions of core target mRNAs in hyperlipidemic zebrafish.
Results
2
Thirteen active components of Cassiae Semen including AO were obtained. A total of 109 potential targets of Cassiae Semen acting on hyperlipidemia were obtained, including the core targets tumor necrosis factor (TNF), interleukin (IL)-1β, prostaglandin-endoperoxide synthase 2 (PTGS2) , Caspase 3 (CASP3), peroxisome proliferator activated receptor-γ (PPAR-γ), etc., which were mainly involved in IL-17 signaling pathway, TNF signaling pathway, as well as lipid and atherosclerosis-related pathways. The results of zebrafish validation experiments showed that, the significant lipid accumulation in zebrafish after modeling occurred, and AO could significantly reduce the TG and TC contents in hyperlipidemic zebrafish tissue (
P
<
0.05,
P
<
0.01), reduce the fat vacuole and lipid droplet in liver, and significantly down-regulate the expressions of core targets
TNF
-
α
and
IL
-
1β
mRNA (
P
<
0.01).
Conclusion
2
Based on network pharmacology, the core pathways and targets of Cassiae Semen in the treatment of hyperlipidemia are obtained, and the improvement effect of AO on hyperlipidemia is preliminarily revealed by zebrafish experiments, it may play the therapeutic effect through the core targets such as TNF-α, IL-1β, etc., in order to provide a reference for the later study of the clinical application of AO in hyperlipidemia.
高脂血症决明子橙黄决明素网络药理学斑马鱼
hyperlipidemiaCassiae Semenaurantio-obtusinnetwork pharmacologyzebrafish
LEGA I C, LIPSCOMBE L L. Review: Diabetes, Obesity, and Cancer-Pathophysiology and Clinical Implications[J]. Endocr Rev, 2020, 41(1): bnz014.
钟赣生.中药学[M]. 北京: 中国中医药出版社, 2012: 96-97.
ZHONG G S. Chinese Materia Medica[M]. Beijing: China Press of Traditional Chinese Medicine, 2012: 96-97.
杨冰, 任娟, 秦昆明, 等. 决明子药理作用及其机制研究进展[J]. 中药材, 2018, 41(5): 1247-1251.
YANG B, REN J, QIN K M, et al. Advanced Research on the Pharmacological Actions and Mechanisms of Cassia obtusifolia L.[J]. Journal of Chinese Medicinal Materials, 2018, 41(5): 1247-1251.
ZANG L, MADDISON L A, CHEN W. Zebrafish as a Model for Obesity and Diabetes[J]. Front Cell Dev Biol, 2018, 6: 91.
VARGAS R, VÁSQUEZ I C. Effects of overfeeding and high-fat diet on cardiosomatic parameters and cardiac structures in young and adult zebrafish[J]. Fish Physiol Biochem, 2017, 43(6): 1761-1773.
郑新春, 刘莉, 戴文聪, 等. 过度喂养建立斑马鱼幼鱼肥胖模型[J]. 南方医科大学学报, 2016, 36(1): 20-25.
ZHENG X C , LIU L, DAI W C, et al. Establishment of a diet-induced obesity model in zebrafish larvae[J]. Journal of Southern Medical University, 2016, 36(1): 20-25.
吴秋燕, 刘杰, 戴梦, 等. 健脾疏肝降脂方对过度喂养导致的肥胖斑马鱼脂质代谢的影响[J]. 上海中医药杂志, 2020, 54(9): 68-72.
WU Q Y, LIU J, DAI M, et al. Application of Jianpi Shugan Jiangzhi recipe on obese zebrafish caused by overfeeding[J]. Shanghai Journal of Traditional Chinese Medicine, 2020, 54(9): 68-72.
RU J, LI P, WANG J, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines[J]. J Cheminform, 2014, 6: 13.
郭静, 郭利平. 基于“气涩血浊”理论浅析高脂血症的中医辨病[J]. 中华中医药杂志, 2017, 32(5): 2323-2325.
GUO J, GUO L P. Analysis of TCM syndrome differentiation based on the "qi astringent and blood turbidity" theory[J]. China Journal Traditional Chinese Medicine and Pharmacy, 2017, 32(5): 2323-2325.
葛肖波, 薛晓琳, 李鑫, 等. 基于现代文献探讨干预血脂异常的药食同源类药物用药特点及其病机分析[J]. 世界中西医结合杂志, 2020, 15(5): 845-849.
GE X B, XUE X L, LI X, et al. Analysis of medication law of edible and medicinal Chinese herbs and pathogenesis that interfere with dyslipidemia based on literature[J]. World Journal of Integrated Traditional and Western Medicine, 2020, 15(5): 845-849.
张榆, 胡少伟, 杨佳颖, 等. 基于UPLC-LTQ Orbitrap MS的益气降脂颗粒化学组成分析[J]. 质谱学报, 2020, 41(5): 411-426.
ZHANG Y, HU S W, YANG J Y, et al. Chemical Composition Analysis of Yiqi Jiangzhi Granules Based on UPLC-LTQ Orbitrap MS[J]. Journal of Chinese Mass Spectrometry Society, 2020, 41(5): 411-426.
伍洋科, 李莎, 蒋菲娅, 等. 代谢组学方法研究橙黄决明素对高脂血症大鼠血浆游离脂肪酸的影响[J]. 分析科学学报, 2020, 36(2): 205-211.
WU Y K, LI S, JIANG F Y, et al. Metabolomics Study on the Effect of Aurantio-obtusin on Plasma Free Fatty Acids in Hyperlipidemic Rats[J]. Journal of Analytical Science, 2020, 36(2): 205-211.
朱周靓, 张世鑫, 郑云燕, 等. 决明子提取物对高脂血症大鼠血脂和肝肾功能的影响[J]. 预防医学, 2021, 33(12): 1290-1294.
ZHU Z J, ZHANG S X, ZHENG Y Y, et al. Effects of cassia seed extract on blood lipids and liver and kidney functions of hyperlipidemic rats[J]. China Preventive Medicine Journal, 2021, 33(12): 1290-1294.
许鹏飞, 孙学斌, 黄尹琦, 等. 决明子降脂有效成分的研究进展[J]. 中华中医药学刊, 2018, 36(1): 150-153.
XU P F, SUN X B, HUANG Y Q, et al. Research Progress on Lipid lowering Effective Components of Semen Cassiae[J]. Chinese Archives of Traditional Chinese Medicine, 2018, 36(1): 150-153.
BAKRIM S, BENKHAIRA N, BOURAIS I, et al. Health Benefits and Pharmacological Properties of Stigmasterol[J]. Antioxidants (Basel), 2022, 11(10): 1912.
ZHANG Y, GU Y, JIANG J, et al. Stigmasterol attenuates hepatic steatosis in rats by strengthening the intestinal barrier and improving bile acid metabolism[J]. NPJ Sci Food, 2022, 6(1): 38.
王莹, 马金刚, 王青, 等. UPLC-MS/MS法测定大鼠血浆中决明子特有蒽醌类成分及其药动学研究[J]. 中国药房, 2013, 24(43): 4053-4057.
WANG Y, MA J G, WANG Q, et al. Determination of Cassiae Semen Specific Anthraquinones in Rats Plasma by UPLC-MS/MS and Pharmacokinetics Study[J]. China Pharmacy, 2013, 24(43): 4053-4057.
戴迎春, 邓楠, 刘文. 橙黄决明素在正常大鼠体内的药动学[J]. 中国医院药学杂志, 2015, 35(14): 1271-1274.
DAI Y C, DENG N, LIU W. Study on pharmacokinetics of aurantio-obtusin in normal rats[J]. Chinese Journal of Hospital Pharmacy, 2015, 35(14): 1271-1274.
胡轶娟, 万丽, 张加雄, 等. 决明子药材薄层色谱鉴别研究[J]. 时珍国医国药, 2006, 17(11): 2129.
HU Y J, WAN L, ZHANG J X, et al. Identification of Cassia obtusifolia L. by TLC[J]. Lishizhen Medicine and Materia Medica Research, 2006, 17(11): 2129.
MAN K, KALLIES A, VASANTHAKUMAR A. Resident and migratory adipose immune cells control systemic metabolism and thermogenesis[J]. Cell Mol Immunol, 2022, 19(3): 421-431.
KERN P A, SAGHIZADEH M, ONG J M, et al. The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase[J]. J Clin Invest, 1995, 95(5): 2111-2119.
NETEA M G, DINARELLO C A. More than inflammation: interleukin-1beta polymorphisms and the lipid metabolism[J]. J Clin Endocrinol Metab, 2011, 96(5): 1279-1281.
DELGADO-LISTA J, GARCIA-RIOS A, PEREZ-MARTINEZ P, et al. Interleukin 1B variant -1473G/C (rs1143623) influences triglyceride and interleukin 6 metabolism[J]. J Clin Endocrinol Metab, 2011, 96(5): E816-E820.
ZHOU Y, ZHOU H, HUA L, et al. Verification of ferroptosis and pyroptosis and identification of PTGS2 as the hub gene in human coronary artery atherosclerosis[J]. Free Radic Biol Med, 2021, 171: 55-68.
CHANG H, WANG Y, WU Y, et al. Cardiac apoptosis caused by elevated cholesterol level in experimental autoimmune myocarditis[J]. Exp Cell Res, 2020, 395(1): 112169.
FENG Z, ZHU L, WU J. RAGE signalling in obesity and diabetes: focus on the adipose tissue macrophage[J]. Adipocyte, 2020, 9(1): 563-566.
BASTA G, SCHMIDT A M, DE CATERINA R. Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes[J]. Cardiovasc Res, 2004, 63(4): 582-592.
WANG Y, LI W, ZHAO T, et al. Interleukin-17-Producing CD4+ T Cells Promote Inflammatory Response and Foster Disease Progression in Hyperlipidemic Patients and Atherosclerotic Mice[J]. Front Cardiovasc Med, 2021, 8: 667768.
ZHOU P, LU S, LUO Y, et al. Attenuation of TNF-α-Induced Inflammatory Injury in Endothelial Cells by Ginsenoside Rb1 via Inhibiting NF-κB, JNK and p38 Signaling Pathways[J]. Front Pharmacol, 2017, 8: 464.
0
浏览量
0
下载量
0
CSCD
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构