1.上海中医药大学研究生院(上海 201203)
2.上海健康医学院健康与公共卫生学院(上海 201318)
周熠,男,在读硕士生,主要从事中药与慢性病关系的研究
那立欣,教授,硕士生导师;E-mail:nalixin2003@163.com
扫 描 看 全 文
周熠,那立欣.基于网络药理学的桑叶-红花治疗2型糖尿病作用机制探讨[J].上海中医药大学学报,2022,36(05):77-85.
ZHOU Yi,NA Lixin.Exploring mechanism of Mori Folium⁃Carthami Flos on type 2 diabetes based on network pharmacology[J].Academic Journal of Shanghai University of Traditional Chinese Medicine,2022,36(05):77-85.
周熠,那立欣.基于网络药理学的桑叶-红花治疗2型糖尿病作用机制探讨[J].上海中医药大学学报,2022,36(05):77-85. DOI: 10.16306/j.1008-861x.2022.05.013.
ZHOU Yi,NA Lixin.Exploring mechanism of Mori Folium⁃Carthami Flos on type 2 diabetes based on network pharmacology[J].Academic Journal of Shanghai University of Traditional Chinese Medicine,2022,36(05):77-85. DOI: 10.16306/j.1008-861x.2022.05.013.
目的,2,基于网络药理学探讨桑叶-红花治疗2型糖尿病的作用机制。,方法,2,基于中药系统药理数据库和分析平台(TCMSP)、治疗靶标数据库(TTD)等进行药物与疾病靶点收集,利用Cytoscape软件构建“有效成分-关键靶点-通路”网络图;基于DAVID 6.8数据库进行GO富集分析与KEGG分析,找出关键靶点及关键成分,并利用AutoDock Vina软件进行分子对接验证;进行细胞实验,验证关键化学成分干预HepG2胰岛素抵抗模型细胞的效果。,结果,2,①网络拓扑分析结果表明,关键药物成分可能为黄芩苷、红厚壳内酯等,关键靶点可能为肿瘤坏死因子(TNF)、AKT丝氨酸/苏氨酸蛋白激酶1(AKT1)等。②KEGG分析发现桑叶-红花抗2型糖尿病主要与胰岛素信号传导通路、腺苷酸活化蛋白激酶(AMPK)通路等信号通路有关。③分子对接发现AKT1与黄芩苷、TNF与红厚壳内酯对接效果最好。④细胞实验证明,20 μg/ml黄芩苷及10 μg/ml红厚壳内酯对HepG2细胞无毒性,且干预HepG2模型细胞后,可改善细胞的胰岛素敏感性。,结论,2,桑叶-红花可能通过胰岛素信号传导通路、胰岛素抵抗相关通路等通路的协同作用发挥治疗2型糖尿病的作用,其关键药效成分可能为黄芩苷和红厚壳内酯。
Objective: To explore the mechanism of Mori Folium-Carthami Flos on type 2 diabetes based on network pharmacology.,Methods,2,The targets of drugs and disease were collected based on Traditional Chinese Medicine Systematic Pharmacology Database and Analysis Platform (TCMSP) and Therapeutic Target Database (TTD), and the network diagram of “active component-key target-pathway” was constructed by Cytoscape software. GO enrichment analysis and KEGG analysis were carried out based on DAVID 6.8 database to identify key targets and key components, and AutoDock Vina Software was used for molecular docking verification. Cell experiments were performed to verify the effects of key chemical components on insulin resistant model cells.,Results,2,①The results of network topology analysis showed that the key drug components might be baicalin and inophyllum E, and the key targets might be tumor necrosis factor (TNF) and AKT serine/threonine protein kinase 1(AKT1). ②KEGG analysis showed that the anti-type 2 diabetes of Mori Folium-Carthami Flos was mainly associated with signal pathways such as insulin signaling pathway and adenosine-activated protein kinase (AMPK) pathway. ③Molecular docking showed that AKT1 and baicalin, TNF and inophyllum E had the best molecular docking effect. ④The cell experiments demonstrated that 20 μg/ml baicalin and 10 μg/ml inophyllum E were not toxic to HepG2 cells and could improve the insulin sensitivity of the cells in HepG2 model cells after intervention.,Conclusion,2,Mori Folium-Carthami Flos may play a synergistic role in the treatment of type 2 diabetes through pathways such as insulin signal transduction pathway and insulin resistance related pathway, and the key pharmacodynamic components may be baicalin and inophyllum E.
桑叶-红花2型糖尿病黄芩苷AKT1网络药理学
Mori Folium-Carthami Flostype 2 diabetesbaicalinAKT1network pharmacology
TARUMI S,TAKEUCHI W,CHALKIDIS G,et al. Leveraging Artificial Intelligence to Improve Chronic Disease Care: Methods and Application to Pharmacotherapy Decision Support for Type-2 Diabetes Mellitus[J]. Methods Inf Med, 2021, 60(S1): e32-e43.
GLOYN A L,DRUCKER D J. Precision medicine in the management of type 2 diabetes[J]. Lancet Diabetes Endocrinol, 2018, 6(11): 891-900.
THONDRE P S, LIGHTOWLER H, AHLSTROM L, et al. Mulberry leaf extract improves glycaemic response and insulaemic response to sucrose in healthy subjects: results of a randomized, double blind, placebo-controlled study[J]. Nutr Metab(Lond),2021, 18(1): 41.
WANG Y, SHI Y, ZOU J,et al. Network pharmacology exploration reveals a common mechanism in the treatment of cardio-cerebrovascular disease with Salvia miltiorrhiza Burge. and Carthamus tinctorius L[J]. BMC Complement Med Ther, 2020, 20(1): 351.
丛羽,季康寿,李小娟. 中药汤剂干预2型糖尿病合并血脂异常疗效的Meta分析[J]. 实用中医内科杂志,2022, 36(1): 93-97, 150-153.
路芳,郜媛. 2型糖尿病患者常见并发症发生情况及影响因素[J]. 中国卫生工程学,2021, 20(5): 746-747,750.
桑葚红花汤养血调经[J]. 家庭科技,2016(9): 37.
SONG X, HE Y, LIU M, et al. Mechanism underlying Polygonum capitatum effect on Helicobacter pylori-associated gastritis based on network pharmacology[J]. Bioorg Chem, 2021, 114: 105044.
庞国明,王凯锋,朱璞,等. 中药序贯三法治疗2型糖尿病[J]. 中医杂志,2019, 60(14): 1243-1246.
CHENG L,WANG J, AN Y, et al. Mulberry leaf activates brown adipose tissue and induces browning of inguinal white adipose tissue in type 2 diabetic rats through regulating AMP-activated protein kinase signalling pathway[J]. Br J Nutr, 2022, 127(6): 810-822.
ZHANG J,ZHOU R,XIANG C,et al. Enhanced thioredoxin,glutathione and Nrf2 antioxidant systems by safflower extract and aceglutamide attenuate cerebral ischaemia/reperfusion injury[J]. J Cell Mol Med, 2020, 24(9): 4967-4980.
SEDKY A A,MAGDY Y. Reduction in TNF alpha and oxidative stress by liraglutide: Impact on ketamine-induced cognitive dysfunction and hyperlocomotion in rats[J]. Life Sci, 2021, 278: 119523.
GHIMIRE K,ALTMANN H M,STRAUB A C,et al. Nitric oxide: what’s new to NO?[J]. Am J Physiol Cell Physiol, 2017, 312(3): C254-C262.
ROGACKA D,AUDZEYENKA I,RACHUBIK P,et al. Involvement of nitric oxide synthase/nitric oxide pathway in the regulation of SIRT1-AMPK crosstalk in podocytes: Impact on glucose uptake[J]. Arch Biochem Biophys, 2021, 709: 108985.
万函,王秀芬,杨美雯,等. 一氧化氮信号通路与动脉粥样硬化[J]. 南昌大学学报(医学版),2021, 61(5): 72-78.
TONELLI C,CHIO I I C,TUVESON D A. Transcriptional Regulation by Nrf2[J]. Antioxid Redox Signal, 2018, 29(17): 1727-1745.
VIKULINA A S, SKIRTACH A G, VOLODKIN D. Hybrids of Polymer Multilayers,Lipids and Nanoparticles: Mimicking the Cellular Microenvironment[J]. Langmuir, 2019, 35(26): 8565-8573.
KENSLER T W,WAKABAYASHI N,BISWAL S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway[J]. Annu Rev Pharmacol Toxicol, 2007, 47: 89-116.
ZHENG W X,HE W Q,ZHANG Q R,et al. Baicalin Inhibits NLRP3 Inflammasome Activity Via the AMPK Signaling Pathway to Alleviate Cerebral Ischemia-Reperfusion Injury[J]. Inflam-mation, 2021, 44(5): 2091-2105.
GHALLAB A,SEDDEK A. PPARG as therapeutic target for antifibrotic therapy[J]. EXCLI J, 2020, 19: 227-229.
MAŁODOBRA-MAZUR M,CIERZNIAK A,KALISZEWSKI K,et al. PPARG Hypermethylation as the First Epigenetic Modification in Newly Onset Insulin Resistance in Human Adipocytes[J]. Genes(Basel), 2021, 12(6): 889.
田立群,黄琴,陶洁,等. HIF-1α在糖尿病大鼠心肌缺血再灌注诱发肾损伤中的作用:与SLC7A11的关系[J]. 中华麻醉学杂志,2021, 41(5): 593-597.
ALBADARI N,DENG S,LI W. The transcriptional factors HIF-1 and HIF-2 and their novel inhibitors in cancer therapy[J]. Expert Opin Drug Discov, 2019, 14(7): 667-682.
PATCHING S G. Glucose Transporters at the Blood-Brain Barrier: Function,Regulation and Gateways for Drug Delivery[J]. Mol Neurobiol, 2017, 54(2): 1046-1077.
YANG X,BAO M,FANG Y,et al. STAT3/HIF-1α signaling activation mediates peritoneal fibrosis induced by high glucose[J]. J Transl Med, 2021, 19(1): 283.
施峰,刘焱文. 红花的化学成分及药理研究进展[J]. 时珍国医国药,2006(9): 1666-1667.
孙元芳,钟小天,高建胜,等. 基于网络药理学的桑叶治疗2型糖尿病作用机制研究[J]. 中药材,2021, 44(4): 954-960.
李伟,徐伟. 黄芩苷药理作用研究进展[J]. 中西医结合研究,2022, 14(3): 193-196.
徐秋玲,郑学芝,郭冉,等. 黄芩苷抑制核因子κB信号通路对糖尿病鼠心肌保护机制研究[J]. 现代医药卫生,2021, 37(13): 2192-2195, 2200.
ZHANG H, LI X, WANG J, et al. Baicalin relieves Mycoplasma pneumoniae infection‑induced lung injury through regulating microRNA‑221 to inhibit the TLR4/NF‑κB signaling pathway[J]. Mol Med Rep, 2021, 24(2): 571.
KU W J,LIN C J,LIN P H. UV-Protection Performance of Calophyllum inophyllum Seed Extracts: A Natural Ultraviolet Screening Agent[J]. Nat Prod Commun,2021,16(1):1934578X2098565.
0
浏览量
427
下载量
0
CSCD
1
CNKI被引量
关联资源
相关文章
相关作者
相关机构