1.暨南大学药学院(广东 广州 511400)
2.暨南大学岭南传统中药研究中心(广东 广州 511400)
3.保和堂(亳州)制药有限公司(安徽 亳州 236800)
4.国家中药现代化工程技术研究中心岭南资源分中心(广东 广州 511400)
5.广东省中医药信息化重点实验室(广东 广州 510632)
叶丽芳,女,在读硕士生,主要从事中药炮制机制与饮片质量标准研究
吴孟华,副教授,硕士生导师;E-mail:zyfxwmh@163.com
曹晖,教授,博士生导师;E-mail:kovhuicao@aliyun.com
扫 描 看 全 文
叶丽芳,吴梦玫,彭杰等.牡丹皮润制过程的现代技术表征[J].上海中医药大学学报,2022,36(05):46-51.
YE Lifang,WU Mengmei,PENG Jie,et al.Modern technical characterization of moistening process of Moutan Cortex[J].Academic Journal of Shanghai University of Traditional Chinese Medicine,2022,36(05):46-51.
叶丽芳,吴梦玫,彭杰等.牡丹皮润制过程的现代技术表征[J].上海中医药大学学报,2022,36(05):46-51. DOI: 10.16306/j.1008-861x.2022.05.009.
YE Lifang,WU Mengmei,PENG Jie,et al.Modern technical characterization of moistening process of Moutan Cortex[J].Academic Journal of Shanghai University of Traditional Chinese Medicine,2022,36(05):46-51. DOI: 10.16306/j.1008-861x.2022.05.009.
目的,2,表征牡丹皮润制过程中水分、质构特性变化,探讨牡丹皮润制传统经验的科学内涵。,方法,2,采用吸水动力学曲线评价牡丹皮润制过程中吸水动态变化,采用低场核磁共振技术分析牡丹皮润制过程中水的相态及分布状态变化,采用质构仪测定牡丹皮润制过程中质构特性变化,采用HPLC测定牡丹皮润制过程中有效成分含量变化。,结果,2,吸水率随着润制温度的升高而增大,随着药材档次的增大而减小,建立不同档次牡丹皮10~30 ℃的吸水动力模型,可预测不同温度不同润制时间的吸水率;润制过程中束缚水和自由水比例不断发生变化,大档牡丹皮5 h内束缚水比例由92.8%减少至14.3%,自由水比例由7.2%增加至85.7%,7 h后药材内全部转化为自由水;低场核磁共振成像表明润制5 h水分已均匀渗入牡丹皮内部,此时内部已无干心;质构特性分析发现,硬度和压缩功随着润制时间的增加不断减小,5 h内硬度由3 612 g减少至444 g,压缩功由208 mJ减少至23 mJ,此时药材软硬适中,5 h后质构特性趋于稳定;随着润制时间的延长,丹皮酚和芍药苷含量逐渐下降,说明润制时间越长,药用物质流失越多。,结论,2,吸水动力学结合低场核磁共振和质构仪等现代技术能够量化表征牡丹皮润制过程,可为牡丹皮润制终点的判断与工艺优化提供数据支撑。
Objective: The changes of moisture and texture characteristics in the moistening process of Moutan Cortex were quantitatively characterized, so as to explore the scientific connotation of the traditional experience of Moutan Cortex moistening.,Methods,2,The dynamic change of water absorption during the moistening process of Moutan Cortex was evaluated by the water absorption kinetics curve. Low-field nuclear magnetic resonance technology was used to analyze the changes of water phase and distribution state during the moistening process of Moutan Cortex. The changes of texture characteristics of Moutan Cortex during moisturizing were measured by texture analyzer. HPLC was used to determine the content changes of active ingredients in the moisturizing process of Moutan Cortex.,Results,2,The water absorption rate was increased with the increment of the moistening temperature, and was decreased with the increasing grade of the medicinal material. The water absorption kinetic model of different grades of Moutan Cortex at 10~30 ℃ was established to predict the water absorption rate of different moisturizing time at different temperatures. During the moistening process, the proportion of bound water and free water changed continuously, within 5 h, the proportion of bound water in high-grade Moutan Cortex was decreased from 92.8% to 14.3%, and the proportion of free water was increased from 7.2% to 85.7%, after 7 h, all was transformed into free water. Low field nuclear magnetic resonance imaging showed that water had evenly infiltrated inside the Moutan Cortex after moistening for 5 h and there was no dry core inside at this time. The analysis of texture characteristics showed that the hardness and compression work were decreased with the increase of moistening time, the hardness was decreased from 3612 g to 444 g and the compression work were decreased from 208 mJ to 23 mJ within 5 h, at which time the hardness of the medicinal material was moderate, and the texture characteristics tended to be stable after 5 h. The contents of paeonol and paeoniflorin were decreased gradually with the extension of moistening time, indicating that the longer moistening time, the more loss of medicinal substances.,Conclusion,2,Water absorption kinetics combined with modern technologies such as low-field nuclear magnetic resonance and texture analyzer can quantitatively characterize the moistening process of Moutan Cortex, which can provide data support for the judgment of the end point of Moutan Cortex moistening and process optimization.
牡丹皮润制吸水动力学低场核磁共振质构特性含量测定
Moutan CortexMoisteningWater absorption kineticsLF-NMRTexture characteristicsContent determination
李燕,许润春. 浅谈目前润药过程中存在的问题[J]. 中药与临床,2018, 9(3): 14-18.
刘庆珊,何雁,曹秋芳,等. 基于LF-NMR/MRI的白芍润制过程水分状态及质构相关性的研究[J]. 中国中药杂志,2020, 45(20): 4882-4888.
YU X L,WANG Z H,ZHANG Y Q,et al. Study on the water state and distribution of Chinese dried noodles during the drying process[J]. J Food Eng, 2018, 233(3): 81-87.
罗斌,赵有斌,尹学清,等. 质构仪在果蔬品质评定中应用的研究进展[J].食品研究与开发,2019, 40(5): 209-213.
林芳栋,蒋珍菊,廖珊,等. 质构仪及其在食品品质评价中的应用综述[J]. 生命科学仪器,2009, 7(5): 61-63.
国家药典委员会. 中华人民共和国药典:2020年版一部[M]. 北京:中国医药科技出版社,2020: 179.
韩宁宁,张振凌,林秀敏,等. 响应面法-中心复合法试验优选炒牡丹皮炮制工艺[J]. 中华中医药学刊,2020, 38(2): 65-68, 278.
朱琼花,莫毛燕,孟江,等. Box-Behnken响应面法优化牡丹皮炭炮制工艺[J]. 中国实验方剂学杂志,2015, 21(14): 12-15.
钟永翠,别甜甜,翟文泽,等. 牡丹皮炮制前后HPLC指纹图谱比较[J]. 中国实验方剂学杂志,2016, 22(10): 71-75.
黄绮韵,周苏娟,陈求芳,等. 牡丹皮炭不同炮制程度的多成分含量变化研究[J]. 中药材,2016, 39(5): 1024-1027.
江国荣,刘少文,陈卫民,等. 不同炮制方法对牡丹皮中有效成分含量的影响[J]. 临床合理用药杂志,2017, 10(28): 15-16.
吴梦玫,叶丽芳,彭杰,等. 基于动力学过程的地黄润制科学内涵研究[J]. 中国中药杂志,2022, 47(13): 3511-3518.
伍淳操,郭小红,刘霞,等. HPLC法比较测定垫江产牡丹皮传统商品规格、木心、粗皮中丹皮酚与芍药苷含量[J]. 中医药导报,2020, 26(1): 25-28.
李积华,黄茂芳,钟业俊. 绿豆浸泡过程研究[J]. 食品科技,2008(11): 161-165.
郑尧,雷蕾,艾娇,等. 人参鲜药干制/复水过程水分状态与化学成分变化规律研究[J].中草药,2019, 50(14): 3302-3312.
0
浏览量
169
下载量
0
CSCD
1
CNKI被引量
关联资源
相关文章
相关作者
相关机构