1.上海中医药大学交叉科学研究院(上海 201203)
邝计霞,女,在读硕士生,主要从事中药小分子抗肿瘤恶病质作用研究
沈强,男,在读博士生,主要从事肿瘤恶病质的病理机制研究(本文贡献与第一作者等同
刘璇,研究员,博士生导师;E-mail:xuanliu@shutcm.edu.cn
扫 描 看 全 文
邝计霞,沈强,刘璇.佛波酯诱导C2C12肌管自噬及corylifol A的保护作用研究[J].上海中医药大学学报,2022,36(02):49-58.
KUANG Jixia,SHEN Qiang,LIU Xuan.Study on effects of phorbol ester on inducing autophagy of C2C12 myotubes and protective effects of corylifol A[J].Academic Journal of Shanghai University of Traditional Chinese Medicine,2022,36(02):49-58.
邝计霞,沈强,刘璇.佛波酯诱导C2C12肌管自噬及corylifol A的保护作用研究[J].上海中医药大学学报,2022,36(02):49-58. DOI: 10.16306/j.1008-861x.2022.02.009.
KUANG Jixia,SHEN Qiang,LIU Xuan.Study on effects of phorbol ester on inducing autophagy of C2C12 myotubes and protective effects of corylifol A[J].Academic Journal of Shanghai University of Traditional Chinese Medicine,2022,36(02):49-58. DOI: 10.16306/j.1008-861x.2022.02.009.
目的,2,探索佛波酯(PMA)诱导C2C12肌管自噬的作用机制并考察补骨脂成分次苷酸查尔酮(CYA)对肌管的保护作用。,方法,2,构建能够准确分析细胞自噬状态的mRFP-GFP-LC3B双荧光C2C12成肌细胞,将已分化C2C12细胞分为对照组、PMA组(1 μmol/L)、自噬阳性对照组(饥饿组)、CYA组(10 μmol/L)及PMA+CYA组。处理时间为48 h。Cytation 5 测定细胞在不同波长下的荧光强度,Western blot检测自噬相关蛋白Beclin-1及微管相关蛋白1轻链3B(LC3B)的表达水平,qPCR技术检测蛋白激酶C(PKC)-ε、PKC-β,PKC-θ和缺氧诱导因子-2α(HIF-2α)的表达水平。用海马能量代谢分析仪(Seahorse XFe 24分析仪)检测细胞线粒体呼吸能力。,结果,2,①与对照组比较,PMA (1 μmol/L)可使C2C12肌管的黄色荧光斑点显著增加,红色荧光信号强度也显著增强(,P,<,0.01),即自噬及自噬溶酶体均增加。而CYA(10 μmol/L)可以显著降低PMA诱导的C2C12肌管黄色荧光斑点和红色荧光信号强度(,P,<,0.01)。②与对照组比较,PMA可以上调Beclin-1和LC3BⅡ蛋白表达水平(,P,<,0.05,,P,<,0.01);与PMA组比较,PMA+CYA组可以降低自噬相关蛋白Beclin-1及LC3BⅡ的蛋白表达水平(,P,<,0.05,,P,<,0.01)。③与对照组比较,PMA显著降低C2C12肌管的基础呼吸、最大呼吸和ATP的生成(,P,<,0.01)。④与对照组比较,PMA组可以显著上调P,KC,-,ε,、,PKC,-,β,、,PKC,-,θ,和,HIF,-,2α,基因表达水平(,P,<,0.05,,P,<,0.01)。,结论,2,PMA可能通过激活C2C12肌管的PKC通路来抑制细胞线粒体呼吸,促进HIF-2α的表达,HIF-2α上调自噬相关蛋白Beclin-1和LC3BⅡ的表达,从而诱导C2C12肌管自噬。CYA则可能通过下调Beclin-1和LC3BⅡ的蛋白表达来保护肌管对抗PMA诱导的自噬。
Objective: To investigate the mechanisms of phorbol ester (PMA) in inducing autophagy of C2C12 myotubes and the protective effects of psoralen corylifol A (CYA) on myotubes.,Methods,2,The mRFP-GFP-LC3B dual-fluorescence C2C12 myoblast cell strain, whose autophagy status can be accurately analyzed, was constructed. The differentiated C2C12 cells were divided into control group, PMA group (1 μmol/L), autophagy positive control group (starvation group),CYA group (10 μmol/L),and PMA+ CYA group. The treatment time was 48 h. Cytation 5 was used to detect the fluorescence intensity of cells at different wavelengths. Western blot was implied to detect the protein levels of autophagy-related proteins Beclin-1 and microtubule-associated protein 1 light chain 3B (LC3B). qPCR technology was used to detect the expression levels of protein kinase C(PKC)-ε, PKC-β, PKC-θ and hypoxia-inducible factor-2α (HIF-2α). Cellular mitochondrial respiration capacity was detected with a hippocampal energy metabolism analyzer (Seahorse XFe24 Analyzer).,Results,2,①Compared with the control group, the PMA group (1 μmol/L) significantly increased the yellow fluorescent spots and red fluorescence signal intensity of C2C12 myotubes (,P,<,0.01), which indicated the increase of both autophagy and autolysosomes. CYA (10 μmol/L) significantly reduced the yellow fluorescent spots and red fluorescence signal intensity of C2C12 myotubes induced by PMA (,P,<,0.01).②Compared with the control group, the PMA group up-regulated the protein expression levels of Beclin-1 and LC3B-Ⅱ (,P,<,0.05,,P,<,0.01). Compared with the PMA group, the PMA+CYA group significantly down-regulated the protein expression levels of autophagy-related proteins Beclin-1 and LC3BⅡ (,P,<,0.05,,P,<,0.01).③Compared with the control group, the PMA group significantly reduced the basal respiration, maximum respiration and ATP generation of the C2C12 myotubes (,P,<,0.01). ④Compared with the control group, the PMA group significantly up-regulated the gene expression levels of PKC-ε, PKC-β, PKC-θ and hypoxia ,HIF,-,2α, (,P,<,0.05,,P,<,0.01).,Conclusions,2,PMA might inhibit cellular mitochondrial respiration and promote the expression of HIF-2α by activating the PKC pathway of C2C12 myotubes. HIF-2α could up-regulate the expression of autophagy-related proteins Beclin-1 and LC3BⅡ, and thus induce the autophagy of C2C12 myotubes. CYA might protect myotubes against PMA-induced autophagy by down-regulating the protein expressions of Beclin-1 and LC3BⅡ.
佛波酯次苷酸查尔酮自噬C2C12肌管
phorbol estercorylifol AautophagyC2C12 myotubes
LEVINE B,KROEMER G. Biological functions of autophagy genes:a disease perspective[J]. Cell, 2019, 176(1-2): 11-42.
MIZUSHIMA N,KOMATSU M. Autophagy:renovation of cells and tissues[J]. Cell, 2011, 147(4): 728-741.
KIM K H,LEE M S. Autophagy-a key player in cellular and body metabolism[J]. Nat Rev Endocrinol, 2014, 10(6): 322-337.
MASIERO E,AGATEA L,MAMMUCARI C,et al. Autophagy is required to maintain muscle mass[J]. Cell Metab, 2009, 10(6): 507-515.
RABEN N,HILL V,SHEA L,et al. Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease[J]. Hum Mol Genet, 2008, 17(24): 3897-3908.
DE PALMA C,MORISI F,CHELI S,et al. Autophagy as a new therapeutic target in Duchenne muscular dystrophy[J]. Cell Death Dis, 2012, 3(11): e418.
GARCÍA-PRAT L, MARTÍNEZ-VICENTE M, PERDIGUERO E,et al. Autophagy maintains stemness by preventing senescence[J]. Nature, 2016, 529(7584): 37-42.
PENNA F,BALLARÒ R,MARTINEZ-CRISTOBAL P,et al. Autophagy exacerbates muscle wasting in cancer cachexia and impairs mitochondrial function[J]. J Mol Biol,2019,431(15):2674-2686.
WANG T,LIU C,JIA L L. The roles of PKCs in regulating autophagy[J].J Cancer Res Clin Oncol, 2018, 144(12): 2303-2311.
YU J H, LIU C Y,ZHENG G B,et al. Pseudolaric acid B induced cell cycle arrest, autophagy and senescence in murine fibrosarcoma l929 cell[J]. Int J Med Sci, 2013, 10(6): 707-718.
ROBERT G,BEN SAHRA I,PUISSANT A,et al. Acadesine kills chronic myelogenous leukemia (CML) cells through PKC-dependent induction of autophagic cell death[J] .PLoS One, 2009, 4(11): e7889.
CLAVEL S,SIFFROI-FERNANDEZ S,COLDEFY A S,et al. Regulation of the intracellular localization of Foxo3a by stress-activated protein kinase signaling pathways in skeletal muscle cells[J] .Mol Cell Biol, 2010, 30(2): 470-480.
白洁,孟军,刘艳辉,等. Ox-LDL对PMA诱导的THP-1巨噬细胞自噬的影响[J]. 中南医学科学杂志,2014, 42(3): 217-221.
HAN Y,LEE H,LI H,et al. Corylifol A from Psoralea corylifolia L. enhances myogenesis and alleviates muscle atrophy[J].Int J Mol Sci, 2020, 21(5): 1571.
李亚静,沈强,邝计霞,等. C26结肠癌细胞与RAW264.7巨噬细胞共培养体系诱导C2C12细胞肌管萎缩及甘草多糖的保护作用[J]. 上海中医药大学学报,2021, 35(4): 45-53.
WANG Y,HAO C L,ZHANG Z H,et al. Valproic acid increased autophagic flux in human multiple myeloma cells in vitro[J]. Biopha, 2020, 127: 110167.
罗胜男,苏震,黄佩佩,等. 高剂量葡萄糖对小鼠肌管细胞自噬表达的影响[J]. 温州医科大学学报,2019, 49(5): 313-320.
SANDRI M. Autophagy in skeletal muscle[J].FEBS Let, 2010, 584(7): 1411-1416.
ZHAO J,BRAULT J J,SCHILD A,et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells[J]. Cell Metab,2007, 6(6): 472-483.
DOYLE A,ZHANG G,ABDEL FATTAH E A,et al. Toll-like receptor 4 mediates lipopolysaccharide-induced muscle catabolism via coordinate activation of ubiquitin-proteasome and autophagy-lysosome pathways[J]. FASEB J, 2011, 25(1): 99-110.
LOKIREDDY S, WIJESOMA I W, BONALA S, et al. Myostatin is a novel tumoral factor that induces cancer cachexia[J]. Biochem J, 2012, 446(1): 23-36.
COSPER P F,LEINWAND L A. Cancer causes cardiac atrophy and autophagy in a sexually dimorphic manner[J]. Cancer Res, 2011, 71(5): 1710-1720.
PAUL P K,GUPTA S K,BHATNAGAR S,et al. Targeted ablation of TRAF6 inhibits skeletal muscle wasting in mice[J]. Cell Biol, 2010, 191(7): 1395-1411.
BROWN D I,GRIENDLING K K. Nox proteins in signal transduction[J]. Free Radic Biol Med, 2009, 47(9): 1239-1253.
JOSEPH L C,BARCA E,SUBRAMANYAM P,et al. Inhibition of NAPDH oxidase 2 (NOX2) prevents oxidative stress and mitochondrial abnormalities caused by saturated fat in cardiomyocytes[J]. PLoS One, 2016, 11(1): e0145750.
JIN Q,JIANG Y H,FU L Z,et al. Wenxin Granule Ameliorates Hypoxia/Reoxygenation-Induced Oxidative Stress in Mitochondria via the PKC-δ/NOX2/ROS Pathway in H9c2 Cells[J]. Oxid Med Cell Longev, 2020, 2020: 3245483.
WANG Y,BISWAS G,PRABU S K,et al. Modulation of mitochondrial metabolic function by phorbol 12-myristate 13-acetate through increased mitochondrial translocation of protein kinase Calpha in C2C12 myocytes[J]. Biochem Pharmacol, 2006, 72(7): 881-892.
TORMOS K V,CHANDEL N S. Inter-connection between mitochondria and HIFs[J]. J Cell Mol Med,2010,14(4):795-804.
LI H,SATRIANO J,THOMAS J L,et al. Interactions between HIF-1α and AMPK in the regulation of cellular hypoxia adaptation in chronic kidney disease[J]. Am J Physiol Renal Physiol, 2015, 309(5): F414-F428.
WALTER K M,SCHÖNENBERGER M J,TRÖTZMÜLLER M,et al. Hif-2α promotes degradation of mammalian peroxisomes by selective autophagy[J]. Cell Metab, 2014, 20(5): 882-897.
SCHÖNENBERGER M J,KREK W,KOVACS W J. EPAS1/HIF-2α is a driver of mammalian pexophagy[J]. Autophagy, 2015, 11(6): 967-969.
LEE S J,KIM H P,JIN Y, et al. Beclin 1 deficiency is associated with increased hypoxia-induced angiogenesis[J]. Autophagy,2011, 7(8): 829-839.
KOUL B, TAAK P, KUMAR A, et al. Genus Psoralea: A review of the traditional and modern uses, phytochemistry and pharmacology[J]. J Ethnopharmacol, 2019(232): 201-226.
PAN X,XU K,QIU X,et al. The Extract of Fructus Psoraleae promotes viability and cartilaginous formation of rat chondrocytes In Vitro[J]. Evid Based Complement Alternat Med, 2016, 2016: 2057631.
周倚墨,张建宁,单中书. 补骨脂提取物干预骨质疏松模型大鼠骨密度及骨生物力学的变化[J]. 中国组织工程研究,2020, 24(2): 165-170.
TSAI M H, HUANG G S, HUNG Y C,et al. Psoralea corylifolia extract ameliorates experimental osteoporosis in ovariectomized rats[J]. Am J Chin Med, 2007, 35(4): 669-680.
YIN S,FAN C Q,WANG Y,et al. Antibacterial prenylflavone derivatives from Psoralea corylifolia,and their structure-activity relationship study[J]. Bioorg Med Chem,2004,12(16): 4387-4392.
LI N,MIAO J,LI J,et al. Enzymatic synthesis of novel corylifol A glucosides via a UDP-glycosyltransferase[J]. Carbohydr Res,2017(446-447): 61-67.
LEE A,YANG H,KIM T,et al. Identification and pharmacokinetics of bioavailable anti-resorptive phytochemicals after oral administration of Psoralea corylifolia L.[J]. Biomed Pharmacother, 2021(144): 112300.
MATSUDA H,KIYOHARA S,SUGIMOTO S,et al. Inhibitors from the seeds of psoralea corylifolia on production of nitric oxide in lipopolysaccharide-activated macrophages[J]. Biol Pharm Bull, 2009, 32(1): 147-149.
LEE S W,YUN B R,KIM M H,et al. Phenolic compounds isolated from Psoralea corylifolia inhibit IL-6-induced STAT3 activation[J]. Planta Med, 2012, 78(9): 903-906.
0
浏览量
242
下载量
0
CSCD
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构