浏览全部资源
扫码关注微信
1.上海中医药大学附属光华医院(上海 200052)
2.上海市中医药研究院中西医结合关节炎研究所(上海 200052)
Published:25 May 2024,
Received:03 November 2022,
Revised:13 May 2023,
扫 描 看 全 文
向峥,张成波,韩海慧等.类风湿关节炎的骨破坏发生机制及中医药防治现代研究进展[J].上海中医药大学学报,2024,38(03):101-109.
XIANG Zheng,ZHANG Chengbo,HAN Haihui,et al.Modern research progress on mechanism of bone destruction and traditional Chinese medicine prevention and treatment in rheumatoid arthritis[J].Academic Journal of Shanghai University of Traditional Chinese Medicine,2024,38(03):101-109.
向峥,张成波,韩海慧等.类风湿关节炎的骨破坏发生机制及中医药防治现代研究进展[J].上海中医药大学学报,2024,38(03):101-109. DOI: 10.16306/j.1008-861x.2024.03.015.
XIANG Zheng,ZHANG Chengbo,HAN Haihui,et al.Modern research progress on mechanism of bone destruction and traditional Chinese medicine prevention and treatment in rheumatoid arthritis[J].Academic Journal of Shanghai University of Traditional Chinese Medicine,2024,38(03):101-109. DOI: 10.16306/j.1008-861x.2024.03.015.
类风湿关节炎(RA)是一种以滑膜炎伴随进展性骨破坏为主要病理表现的自身免疫性疾病。目前药物治疗可有效延缓炎症反应,但对骨破坏作用疗效有限。从骨代谢、骨免疫、神经内分泌调控角度探究RA骨破坏的发生机制,并对中医药防治RA骨破坏研究进展进行概述,以冀为RA骨破坏的治疗提供依据。
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovitis with progressive bone destruction. The current drug therapy of RA can effectively delay the inflammation, but its effect on bone destruction is limited. This article explores the mechanisms of bone destruction of RA from the perspectives of bone metabolism, bone immunology, and neuroendocrine regulation, and reviews the research progress of traditional Chinese medicine in the prevention and treatment of bone destruction of RA, in order to provide the evidence for the treatment of bone destruction of RA.
类风湿关节炎骨破坏机制中医药综述
rheumatoid arthritisbone destructionmechanismtraditional Chinese medicinereview
KIM J M, LIN C, STAVRE Z, et al. Osteoblast-Osteoclast Communication and Bone Homeostasis[J]. Cells, 2020, 9(9): 2073.
ABU-AMER Y. NF‑κB signaling and bone resorption[J]. Osteoporos Int, 2013, 24(9): 2377-2386.
PETTIT A R, WALSH N C, MANNING C, et al. RANKL protein is expressed at the pannus-bone interface at sites of articular bone erosion in rheumatoid arthritis[J]. Rheumatology (Oxford), 2006, 45(9): 1068-1076.
MCINNES I B, SCHETT G. The Pathogenesis of Rheumatoid Arthritis[J]. N Engl J Med, 2011, 365(23): 2205-2219.
LEIBBRANDT A, PENNINGER J M. RANK/RANKL: regulators of immune responses and bone physiology[J]. Ann N Y Acad Sci, 2008, 1143: 123-150.
ZHAO C, IRIE N, TAKADA Y, et al. Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis[J]. Cell Metab, 2006, 4(2): 111-121.
TONNA S, TAKYAR F M, VRAHNAS C, et al. EphrinB2 signaling in osteoblasts promotes bone mineralization by preventing apoptosis[J]. FASEB J, 2014, 28(10): 4482-4496.
VALVERDE-FRANCO G, PELLETIER J P, FAHMI H, et al. In vivo bone-specific EphB4 overexpression in mice protects both subchondral bone and cartilage during osteoarthritis[J]. Arthritis Rheum, 2012, 64(11): 3614-3625.
HU Y, WANG X, WU Y, et al. Role of EFNB1 and EFNB2 in Mouse Collagen-Induced Arthritis and Human Rheumatoid Arthritis[J]. Arthritis Rheumatol, 2015, 67(7): 1778-1788.
OZEKI N, MOGI M, NAKAMURA H, et al. Differential expression of the Fas-Fas ligand system on cytokine-induced apoptotic cell death in mouse osteoblastic cells[J]. Arch Oral Biol, 2002, 47(7): 511-517.
WANG L, LIU S, ZHAO Y, et al. Osteoblast-induced osteoclast apoptosis by fas ligand/FAS pathway is required for maintenance of bone mass[J]. Cell Death Differ, 2015, 22(10): 1654-1664.
AUDO R, CALMON-HAMATY F, PAPON L, et al. Distinct effects of soluble and membrane-bound fas ligand on fibroblast-like synoviocytes from rheumatoid arthritis patients[J]. Arthritis Rheumatol, 2014, 66(12): 3289-3299.
CALMON-HAMATY F, AUDO R, COMBE B, et al. Targeting the Fas/FasL system in Rheumatoid Arthritis therapy: Promising or risky?[J]. Cytokine, 2015, 75(2): 228-233.
XU R. Semaphorin 3A: A new player in bone remodeling[J]. Cell Adh Migr, 2014, 8(1): 5-10.
LIU L N, LI X M, YE D Q, et al. Emerging role of semaphorin-3A in autoimmune diseases[J]. Inflammopharmacology, 2018, 26(3): 655-665.
HAYASHI M, NAKASHIMA T, TANIGUCHI M, et al. Osteoprotection by semaphorin 3A[J]. Nature, 2012, 485(7396): 69-74.
VADASZ Z, HAJ T, HALASZ K, et al. Semaphorin 3A is a marker for disease activity and a potential immunoregulator in systemic lupus erythematosus[J]. Arthritis Res Ther, 2012, 14(3): R146.
TAKAGAWA S, NAKAMURA F, KUMAGAI K, et al. Decreased semaphorin3A expression correlates with disease activity and histological features of rheumatoid arthritis[J]. BMC Musculoskelet Disord, 2013, 14: 40.
CHO M L, MIN S Y, CHANG S H, et al. Transforming growth factor beta 1(TGF-beta1) down-regulates TNFalpha-induced RANTES production in rheumatoid synovial fibroblasts through NF-kappaB-mediated transcriptional repression[J]. Immunol Lett, 2006, 105(2): 159-166.
CHEMEL M, BRION R, SEGALINY A I, et al. Bone Morphogenetic Protein 2 and Transforming Growth Factor β1 Inhibit the Expression of the Proinflammatory Cytokine IL-34 in Rheumatoid Arthritis Synovial Fibroblasts[J]. Am J Pathol, 2017, 187(1): 156-162.
XIAN L, WU X, PANG L, et al. Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells[J]. Nat Med, 2012, 18(7): 1095-1101.
WANG Y, HOU L, YUAN X, et al. miR-483-3p promotes cell proliferation and suppresses apoptosis in rheumatoid arthritis fibroblast-like synoviocytes by targeting IGF-1[J]. Biomed Pharmacother, 2020, 130: 110519.
ZHAO Y L, WU J, ZHANG T P, et al. Circulating Insulin-like Growth Factor-1 Levels in Patients with Rheumatoid Arthritis: A Meta-analysis[J]. Curr Pharm Des, 2019, 25(10): 1091-1098.
SCHETT G, STACH C, ZWERINA J, et al. How antirheumatic drugs protect joints from damage in rheumatoid arthritis[J]. Arthritis Rheum, 2008, 58(10): 2936-2948.
SATO K, SUEMATSU A, OKAMOTO K, et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction[J]. J Exp Med, 2006, 203(12): 2673-2682.
CHEN S, GUO C, WANG R, et al. Monocytic MDSCs skew Th17 cells toward a pro-osteoclastogenic phenotype and potentiate bone erosion in rheumatoid arthritis[J]. Rheumatology (Oxford), 2021, 60(5): 2409-2420.
PARADOWSKA-GORYCKA A, WAJDA A, ROMANOWSKA-PRÓCHNICKA K, et al. Th17/Treg-Related Transcriptional Factor Expression and Cytokine Profile in Patients With Rheumatoid Arthritis[J]. Front Immunol, 2020, 11: 572858.
ZAISS M M, AXMANN R, ZWERINA J, et al. Treg cells suppress osteoclast formation: A new link between the immune system and bone[J]. Arthritis Rheum, 2007, 56(12): 4104-4112.
EBID R, LICHTNEKERT J, ANDERS H J. Hyaluronan is not a ligand but a regulator of toll-like receptor signaling in mesangial cells: role of extracellular matrix in innate immunity[J]. ISRN Nephrol, 2014, 2014: 714081.
KAWAI T, AKIRA S. TLR signaling[J]. Semin Immunol, 2007, 19(1): 24-32.
CHO M L, JU J H, KIM H R, et al. Toll-like receptor 2 ligand mediates the upregulation of angiogenic factor, vascular endothelial growth factor and interleukin-8/CXCL8 in human rheumatoid synovial fibroblasts[J]. Immunol Lett, 2007, 108(2): 121-128.
KOCH A E, KUNKEL S L, HARLOW L A, et al. Epithelial neutrophil activating peptide-78: a novel chemotactic cytokine for neutrophils in arthritis[J]. J Clin Invest, 1994, 94(3): 1012-1018.
KOCH A E, KUNKEL S L, SHAH M R, et al. Growth-related gene product alpha. A chemotactic cytokine for neutrophils in rheumatoid arthritis[J]. J Immunol, 1995, 155(7): 3660-3666.
PATEL D D, ZACHARIAH J P, WHICHARD L P. CXCR3 and CCR5 ligands in rheumatoid arthritis synovium[J]. Clin Immunol, 2001, 98(1): 39-45.
KOCH A E, KUNKEL S L, BURROWS J C, et al. Synovial tissue macrophage as a source of the chemotactic cytokine IL-8[J]. J Immunol, 1991, 147(7): 2187-2195.
BRYLKA L J, SCHINKE T. Chemokines in Physiological and Pathological Bone Remodeling[J]. Front Immunol, 2019, 10: 2182.
YANG X, CHANG Y, WEI W. Emerging role of targeting macrophages in rheumatoid arthritis: Focus on polarization, metabolism and apoptosis[J]. Cell Prolif, 2020, 53(7): e12854.
JUNG S M, KIM K W, YANG C W, et al. Cytokine-mediated bone destruction in rheumatoid arthritis[J]. J Immunol Res, 2014, 2014: 263625.
王霖, 王文杰. 破骨细胞在类风湿性关节炎骨破坏中的作用及其调控机制[J]. 生理科学进展, 2004, 35(3): 269-272.
WANG L, WANG W J. The role of osteoclasts on the bone destruction of rheumatoid arthritis and the mechanism of its regulation[J]. Progress in Physiological Sciences, 2004, 35(3): 269-272.
KITAURA H, MARAHLEH A, OHORI F, et al. Role of the Interaction of Tumor Necrosis Factor‑α and Tumor Necrosis Factor Receptors 1 and 2 in Bone-Related Cells[J]. Int J Mol Sci, 2022, 23(3): 1481.
KITAURA H, KIMURA K, ISHIDA M, et al. Immunological reaction in TNF‑α‑mediated osteoclast formation and bone resorption in vitro and in vivo[J]. Clin Dev Immunol, 2013, 2013: 181849.
YAO Z, GETTING S J, LOCKE I C. Regulation of TNF-Induced Osteoclast Differentiation[J]. Cells, 2021, 11(1): 132.
YAMAZAKI M, KAWAI M, MIYAGAWA K, et al. Interleukin-1-induced acute bone resorption facilitates the secretion of fibroblast growth factor 23 into the circulation[J]. J Bone Miner Metab, 2015, 33(3): 342-354.
CHIEN S Y, TSAI C H, LIU S C, et al. Noggin Inhibits IL-1β and BMP-2 Expression, and Attenuates Cartilage Degeneration and Subchondral Bone Destruction in Experimental Osteoarthritis[J]. Cells, 2020, 9(4): E927.
MUSTAFA G, MAHROSH H S, ARIF R. In Silico Characterization of Growth Differentiation Factors as Inhibitors of TNF-Alpha and IL-6 in Immune-Mediated Inflammatory Disease Rheumatoid Arthritis[J]. Biomed Res Int, 2021, 2021: 5538535.
ATZENI F, NUCERA V, MASALA I F, et al. Il-6 Involvement in pain, fatigue and mood disorders in rheumatoid arthritis and the effects of Il-6 inhibitor sarilumab[J]. Pharmacol Res, 2019, 149: 104402.
SCOTT L J. Tocilizumab: A Review in Rheumatoid Arthritis[J]. Drugs, 2017, 77(17): 1865-1879.
CHOY E H, PANAYI G S. Cytokine pathways and joint inflammation in rheumatoid arthritis[J]. N Engl J Med, 2001, 344(12): 907-916.
DEGBOÉ Y, RAUWEL B, BARON M, et al. Polarization of Rheumatoid Macrophages by TNF Targeting Through an IL-10/STAT3 Mechanism[J]. Front Immunol, 2019, 10: 3.
HAIKAL S M, ABDELTAWAB N F, RASHED L A, et al. Combination Therapy of Mesenchymal Stromal Cells and Interleukin-4 Attenuates Rheumatoid Arthritis in a Collagen-Induced Murine Model[J]. Cells, 2019, 8(8): 823.
KITAURA H, MARAHLEH A, OHORI F, et al. Osteocyte-Related Cytokines Regulate Osteoclast Formation and Bone Resorption[J]. Int J Mol Sci, 2020, 21(14): 5169.
ALMEIDA M, IYER S, MARTIN-MILLAN M, et al. Estrogen receptor-α signaling in osteoblast progenitors stimulates cortical bone accrual[J]. J Clin Invest, 2013, 123(1): 394-404.
HAYASHI M, NAKASHIMA T, YOSHIMURA N, et al. Autoregulation of Osteocyte Sema3A Orchestrates Estrogen Action and Counteracts Bone Aging[J]. Cell Metab, 2019, 29(3): 627-637.
PESCHKEN C A, ROBINSON D B, HITCHON C A, et al. Pregnancy and the risk of rheumatoid arthritis in a highly predisposed North American Native population[J]. J Rheumatol, 2012, 39(12): 2253-2260.
ALPÍZAR-RODRÍGUEZ D, FINCKH A. Environmental factors and hormones in the development of rheumatoid arthritis[J]. Semin Immunopathol, 2017, 39(4): 461-468.
DEMIR H, KELEŞTIMUR F, TUNÇ M, et al. Hypothalamo-pituitary-adrenal axis and growth hormone axis in patients with rheumatoid arthritis[J]. Scand J Rheumatol, 1999, 28(1): 41-46.
SCHLAGHECKE R, KORNELY E, WOLLENHAUPT J, et al. Glucocorticoid receptors in rheumatoid arthritis[J]. Arthritis Rheum, 1992, 35(7): 740-744.
BASCHANT U, LANE N E, TUCKERMANN J. The multiple facets of glucocorticoid action in rheumatoid arthritis[J]. Nat Rev Rheumatol, 2012, 8(11): 645-655.
NICKS K M, FOWLER T W, GADDY D. Reproductive Hormones and Bone[J]. Curr Osteoporos Rep, 2010, 8(2): 60-67.
WAN Q Q, QIN W P, MA Y X, et al. Crosstalk between Bone and Nerves within Bone[J]. Adv Sci (Weinh), 2021, 8(7): 2003390.
李琇莹, 苏晓, 薛鸾, 等. 基于真实世界研究类风湿关节炎患者的中医证候与临床特点[J]. 中国中医药信息杂志, 2023, 30(4): 122-128.
LI X Y, SU X, XUE L, et al. Analysis of TCM Syndromes and Clinical Manifestations of Rheumatoid Arthritis Patients Based on Real-world Study[J]. Chinese Journal of Information on Traditional Chinese Medicine, 2023, 30(4): 122-128.
刘庆. 基于“治风先治血”探讨RA病例特点及中医药治疗的系统评价[D]. 天津: 天津中医药大学, 2022.
LIU Q. A systematic evaluation of RA case characteristics and TCM treatment based on the principle of "treating blood before treating wind"[D]. Tianjin: Tianjin University of Traditional Chinese Medicine, 2022.
杨显娜, 包路艳, 唐海倩, 等. 4 238例类风湿关节炎共病的临床研究[J]. 风湿病与关节炎, 2022, 11(7): 18-23.
YANG X N, BAO L Y, TANG H Q, et al. Clinical study of 4 238 cases of rheumatoid arthritis comorbidities[J]. Rheumatism and Arthritis, 2022, 11(7): 18-23.
陆婷, 饶艳婷, 张瑾, 等. 雷公藤多苷片治疗类风湿关节炎的疗效及作用机制[J]. 中药材, 2021, 44(9): 2214-2218.
LU T, RAO Y T, ZHANG J, et al. Efficacy and action mechanism of Lei Gong Teng Polyglucoside Tablets in the treatment of rheumatoid arthritis[J]. Journal of Chinese Medicinal Materials, 2021, 44(9): 2214-2218.
杨山景, 封安杰, 孙越, 等. 白芍总苷的药理作用及机制研究进展[J]. 中国现代应用药学, 2021, 38(13): 1627-1633.
YANG S J, FENG A J, SUN Y, et al. Research Progress on Mechanism and Pharmacological Activities of Total Glucosides of Paeony[J]. Chinese Journal of Modern Applied Pharmacy, 2021, 38(13): 1627-1633.
林薇, 荣晓凤. MMP-3在类风湿性关节炎中的临床意义及中医药干预的研究进展[J]. 现代医药卫生, 2022, 38(13): 2241-2244.
LIN W, RONG X F. Clinical significance of MMP-3 in rheumatoid arthritis and research progress of TCM intervention[J]. Journal of Modern Medicine & Health, 2022, 38(13): 2241-2244.
LIN J, XIAO L, OUYANG G, et al. Total glucosides of paeony inhibits Th1/Th17 cells via decreasing dendritic cells activation in rheumatoid arthritis[J]. Cell Immunol, 2012, 280(2): 156-163.
HUANG D N, WU F F, ZHANG A H, et al. Efficacy of berberine in treatment of rheumatoid arthritis: From multiple targets to therapeutic potential[J]. Pharmacol Res, 2021, 169: 105667.
白永峰, 曹乌吉斯古楞. 滑膜成纤维细胞在类风湿性关节炎中的作用及中药干预研究进展[J]. 中国实验方剂学杂志, 2022, 28(14): 226-234.
BAI Y F, CAOWU J S G L. Effect of Synovial Fibroblasts in Rheumatoid Arthritis and Intervention of Chinese Medicine:A Review[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2022, 28(14): 226-234.
代巧妹, 梁慧, 云雨, 等. 中药单体抗实验性类风湿性关节炎滑膜血管生成作用研究进展[J]. 中医药学报, 2016, 44(5): 87-89.
DAI Q M, LIANG H, YUN Y, et al. Research progress of synovial angiogenesis in experimental rheumatoid arthritis by Chinese medicinal monomers[J]. Acta Chinese Medicine and Pharmacology, 2016, 44(5): 87-89.
庄丽, 陈照宇, 韩光明, 等. 藤枝愈痹颗粒治疗类风湿关节炎作用机制的网络药理学和分子对接技术探讨[J]. 中国药业, 2022, 31(19): 36-44.
ZHUANG L, CHEN Z Y, HAN G M, et al. Mechanism of Tengzhi Yubi Granules in the Treatment of Rheumatoid Arthritis Based on Network Pharmacology and Molecular Docking[J]. China Pharmaceuticals, 2022, 31(19): 36-44.
王玉玉, 张芳芳, 李雪, 等. 基于网络药理学和分子对接的薏苡附子散对类风湿性关节炎及慢性心力衰竭“异病同治”作用机制探讨[J]. 药物评价研究, 2023, 46(2): 321-329.
WANG Y Y, ZHANG F F, LI X, et al. Mechanism of Yiyi Fuzi Powder in homotherapy for rheumatoid arthritis and chronic heart failure based on network pharmacology and molecular docking[J]. Drug Evaluation Research, 2023, 46(2): 321-329.
姜平, 戴洁梅, 魏凯, 等. 基于网络药理学及分子对接技术探究复方雷公藤逐痛颗粒干预类风湿关节炎的作用机制[J]. 上海中医药杂志, 2022, 56(9): 21-31.
JIANG P, DAI J M, WEI K, et al. Study on the mechanism of Compound Tripterygium Wilfordii Painkiller Granules on rheumatoid arthritis based on network pharmacology and molecular docking[J]. Shanghai Journal of Traditional Chinese Medicine, 2022, 56(9): 21-31.
WANG W, ZHOU H, LIU L. Side effects of methotrexate therapy for rheumatoid arthritis: A systematic review[J]. Eur J Med Chem, 2018, 158: 502-516.
0
Views
0
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution