浏览全部资源
扫码关注微信
1.上海中医药大学中药研究所,国家中医药管理局中药新资源与品质评价重点研究室,教育部中药标准化重点研究室,上海市复方中药重点实验室(上海 201203)
2.上海中医药大学中药学院(上海 201203)
Published:25 May 2024,
Received:28 April 2023,
Revised:15 April 2024,
扫 描 看 全 文
肖亦菽,陈敏,谈荣慧等.丹参SmERF081转录因子基因克隆与靶基因鉴定[J].上海中医药大学学报,2024,38(03):7-14.
XIAO Yishu,CHEN Min,TAN Ronghui,et al.Gene cloning and target gene identification of transcription factor SmERF081 from Salvia miltiorrhiza[J].Academic Journal of Shanghai University of Traditional Chinese Medicine,2024,38(03):7-14.
肖亦菽,陈敏,谈荣慧等.丹参SmERF081转录因子基因克隆与靶基因鉴定[J].上海中医药大学学报,2024,38(03):7-14. DOI: 10.16306/j.1008-861x.2024.03.002.
XIAO Yishu,CHEN Min,TAN Ronghui,et al.Gene cloning and target gene identification of transcription factor SmERF081 from Salvia miltiorrhiza[J].Academic Journal of Shanghai University of Traditional Chinese Medicine,2024,38(03):7-14. DOI: 10.16306/j.1008-861x.2024.03.002.
目的
2
克隆丹参(
Salvia miltiorrhiza
Bge.) 转录因子
SmERF081
,分析
SmERF081
的靶基因。
方法
2
以丹参转录组数据Unigene(c48961-g1)序列为参考,利用PCR扩增获得
SmERF081
基因序列;通过生物信息学预测
SmERF081
编码蛋白的理化性质、蛋白质结构等分子特征;使用MEGA 7软件构建系统进化树;对
SmERF081
进行异源表达和蛋白纯化;通过酵母单杂、双荧光素酶报告系统和化学发光法凝胶迁移实验(EMSA)鉴定
SmERF081
与
SmCPS5
启动子是否结合。
结果
2
克隆得到
SmERF081
基因,cDNA全长453 bp(Genbank登陆号:OQ466089),编码151个氨基酸,相对分子质量16.46 kDa,等电点9.75。该蛋白不含信号肽,无跨膜区,其高级结构主要由无规则卷曲构成。进化树分析表明
SmERF081
与拟南芥At1G28360.1、丹参SmERF8同源关系最近。原核表达结果显示,经IPTG诱导后
SmERF081
在大肠杆菌中成功异源表达,并通过纯化获得目的蛋白。酵母单杂、双荧光素酶报告基因检测和EMSA确认
SmERF081
可与丹参
SmCPS5
启动子结合。
结论
2
鉴定到丹参中一个新转录因子
SmERF081
,生物信息学分析及分子互作初步证实其靶基因为丹参
SmCPS5
二萜环化酶。
Objective: To clone the transcription factor
SmERF081
from
Salvia miltiorrhiza
Bunge and analyze its target gene.
Methods
2
Using the UniGene (c48961-g1) sequence of
S.
miltiorrhiza
transcriptome data as reference, the
SmERF081
gene sequence was obtained by PCR amplification. Bioinformatics was used to predict the physicochemical properties, protein structure, and other molecular characteristics of the protein encoded by
SmERF081
. MEGA 7 was used to build the phylogenetic tree. Heterologous expression and protein purification on
SmERF081
were performed. Whether
SmERF081
binds to the promoter of
SmCPS5
(
copalyl diphosphate synthase 5, CPS5
)was identified by yeast one-hybrid system, dual-luciferase reporter system and EMSA.
Results
2
The
SmERF081
gene was cloned, with a total length of cDNA 453 bp (GenBank accession number: OQ466089), encoding 151 amino acids, the relative molecular mass of 16.46 kDa, and the isoelectric point of 9.75. The protein contains no signal peptide and no transmembrane region, and its higher-order structure is mainly composed of irregular curls. Phylogenetic tree analysis showed that
SmERF081
had the closest homology with
Arabidopsis
At1G28360.1 and SmERF8. The results of Prokaryotic expression showed that
SmERF081
induced by IPTG was successfully heterologously expressed in
Escherichia coli
and the target protein was obtained by purification.Yeast one-hybrid system, dual-luciferase reporter gene assay and EMSA verified that
SmERF081
could bind to the promoter of
SmCPS5
.
Conclusion
2
A new transcription factor SmERF081 in
S. miltiorrhiza
was identified. Bioinformatics analysis and molecular interactions preliminarily confirmed its target gene was
SmCPS5
diterpene cyclase.
丹参SmERF081生物信息学靶基因
Salvia miltiorrhizaSmERF081bioinformaticstarget gene analysis
WANG X, YANG Y, LIU X, et al. Pharmacological properties of tanshinones, the natural products from Salvia miltiorrhiza[J]. Adv Pharmacol, 2020, 87: 43-70.
PU Z, TANG H, LONG N, et al. Assessment of the anti-virulence potential of extracts from four plants used in traditional Chinese medicine against multidrug-resistant pathogens[J]. BMC Complement Med Ther, 2020, 20(1): 318.
JIANG L, WANG J, JU J, et al. Salvianolic acid B and sodium tanshinone II A sulfonate prevent pulmonary fibrosis through anti-inflammatory and anti-fibrotic process[J]. Eur J Pharmacol, 2020, 883: 173352.
SUN G, LI X, WEI J, et al. Pharmacodynamic substances in Salvia miltiorrhiza for prevention and treatment of hyperlipidemia and coronary heart disease based on lipidomics technology and network pharmacology analysis[J]. Biomed Pharmacother, 2021, 141: 111846.
NAKANO T, SUZUKI K, FUJIMURA T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiol, 2006, 140(2): 411-432.
XIE Z, NOLAN T, JIANG H, et al. The AP2/ERF transcription factor TINY modulates brassinosteroid-regulated plant growth and drought responses in Arabidopsis[J]. Plant Cell, 2019, 31(8): 1788-1806.
XU S, YAO S, HUANG R, et al. Transcriptome-wide analysis of the AP2/ERF transcription factor gene family involved in the regulation of gypenoside biosynthesis in Gynostemma pentaphyllum[J]. Plant Physiol Biochem, 2020, 154: 238-247.
ZANG Z Y, LV Y, LIU S, et al. A Novel ERF Transcription Factor, ZmERF105, Positively Regulates Maize Resistance to Exserohilum turcicum[J]. Front Plant Sci, 2020, 11: 850.
TAN X L, FAN Z Q, SHAN W, et al. Association of BrERF72 with methyl jasmonate-induced leaf senescence of Chinese flowering cabbage through activating JA biosynthesis-related genes[J]. Hortic Res, 2018, 5: 22.
YANG G, PENG S, WANG T, et al. Walnut ethylene response factor JrERF2-2 interact with JrWRKY7 to regulate the GSTs in plant drought tolerance[J]. Ecotoxicol Environ Saf, 2021, 228: 112945.
LEE S Y, HWANG E Y, SEOK H Y, et al. Arabidopsis AtERF71/HRE2 functions as transcriptional activator via cis-acting GCC box or DRE/CRT element and is involved in root development through regulation of root cell expansion[J]. Plant Cell Rep, 2015, 34(2): 223-231.
ZHANG X M, CHENG Z H, YAO W J, et al. Overexpression of PagERF072 from Poplar Improves Salt Tolerance[J]. Int J Mol Sci, 2022, 23(18): 10707.
ZHANG M, LI S, NIE L, et al. Two jasmonate-responsive factors, TcERF12 and TcERF15, respectively act as repressor and activator of tasy gene of taxol biosynthesis in Taxus chinensis[J]. Plant Mol Biol, 2015, 89(4-5): 463-473.
JI A J, LUO H M, XU Z C, et al. Genome-wide identification of the AP2/ERF gene family involved in active constituent biosynthesis in Salvia miltiorrhiza[J]. Plant Genome, 2016, 9(2). doi: 10.3835/plantgenome2015.08.0077http://dx.doi.org/10.3835/plantgenome2015.08.0077.
BAI Z, LI W, JIA Y, et al. The ethylene response factor SmERF6 co-regulates the transcription of SmCPS1 and SmKSL1 and is involved in tanshinone biosynthesis in Salvia miltiorrhiza hairy roots[J]. Planta, 2018, 248(1): 243-255.
HUANG Q, SUN M, YUAN T, et al. The AP2/ERF transcription factor SmERF1L1 regulates the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza[J]. Food Chem, 2019, 274: 368-375.
SUN M, SHI M, WANG Y, et al. The biosynthesis of phenolic acids is positively regulated by the JA-responsive transcription factor ERF115 in Salvia miltiorrhiza[J]. J Exp Bot, 2019, 70(1): 243-254.
BAI Z, WU J, HUANG W, et al. The ethylene response factor SmERF8 regulates the expression of SmKSL1 and is involved in tanshinone biosynthesis in Saliva miltiorrhiza hairy roots[J]. J Plant Physiol, 2020, 244: 153006.
闻可心,刘雪梅. AP2功能基因在植物花发育中的重要作用[J]. 生物技术通报,2010(2): 1-7.
WEN K X, LIU X M. The important role of AP2 functional genes in plant floral development[J]. Biotechnology Bulletin, 2010(2): 1-7.
白朕卿. 丹参酮合成关键基因SmCPS1与SmKSL1转录调控的研究[D]. 咸阳:西北农林科技大学, 2018.
BAI H Q. Study on the transcriptional regulation of SmCPS1 and SmKSL1 are involved in transhinone biosynthesis[D]. Xianyang: Northwest A&F University, 2018.
CAO Y, CHEN R, WANG W T, et al. SmSPL6 Induces Phenolic Acid Biosynthesis and Affects Root Development in Salvia miltiorrhiza[J]. Int J Mol Sci, 2021, 22(15): 7895.
WANG M, GAO M, ZHAO Y, et al. LcERF19, an AP2/ERF transcription factor from Litsea cubeba, positively regulates geranial and neral biosynthesis[J]. Hortic Res, 2022, 9: uhac093.
LI Z, ZHANG Y, REN J, et al. Ethylene-responsive factor ERF114 mediates fungal pathogen effector PevD1-induced disease resistance in Arabidopsis thaliana[J]. Mol Plant Pathol, 2022, 23(6): 819-831.
YU Y, YU M, ZHANG S X, et al. Transcriptomic Identification of Wheat AP2/ERF Transcription Factors and Functional Characterization of TaERF‑6‑3A in Response to Drought and Salinity Stresses[J]. Int J Mol Sci, 2022, 23(6): 3272.
孙永珍,牛云云,李滢,等. 西洋参PqERF1基因的克隆和生物信息学分析[J]. 药学学报, 2011, 46(8): 1008-1014.
SUN Y Z, NIU Y Y, L Y, et al. Cloning and bioinformatic analysis of PqERF1 gene in Panax quinquefolius[J]. Acta Pharmaceutica Sinica, 2011, 46(8): 1008-1014.
肖亮. AP2/ERF转录因子LTF1调控菘蓝活性木脂素生物合成的机制研究[D]. 上海:海军军医大学, 2021.
XIAO L. Study on the mechanism of AP2/ERF transcription factor ILF1 regulate lignan biosynthesis in Isatis indigotica[D]. Shanghai: Naval Medical University, 2021.
SEOK H Y, TRAN H T, LEE S Y, et al. AtERF71/HRE2, an Arabidopsis AP2/ERF Transcription Factor Gene, Contains Both Positive and Negative Cis-Regulatory Elements in Its Promoter Region Involved in Hypoxia and Salt Stress Responses[J]. Int J Mol Sci, 2022, 23(10): 5310.
XIE Z, YANG C, LIU S, et al. Identification of AP2/ERF transcription factors in Tetrastigma hemsleyanum revealed the specific roles of ERF46 under cold stress[J]. Front Plant Sci, 2022, 13: 936602.
LIN T, DU J, ZHENG X, et al. Comparative transcriptome analysis of MeJA-responsive AP2/ERF transcription factors involved in notoginsenosides biosynthesis[J]. 3 Biotech, 2020, 10(7): 290.
CUI G, DUAN L, JIN B, et al. Functional divergence of diterpene syntheses in the medicinal plant Salvia miltiorrhiza[J]. Plant Physiol, 2015, 169(3): 1607-1618.
曹小青,马晓惠,程亚田,等. 丹参酮生物合成途径中C20位氧化酶改造研究[J]. 中国中药杂志, 2023, 48(9): 2298-2306.
CAO X Q, MA X H, CHENG Y T, et al. Modification of C20 oxidase in tanshinone biosynthesis pathhway[J]. China Journal of Chinese Materia Medica, 2023, 48(9): 2298-2306.
0
Views
0
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution