浏览全部资源
扫码关注微信
1.上海理工大学健康科学与工程学院(上海 200093)
2.上海健康医学院附属嘉定区中心医院临床科研中心 (上海 201800)
3.上海中医药大学研究生院(上海 201203)
4.上海大学微电子学院(上海 201800)
5.上海交通大学医学院附属瑞金医院消化外科研究所(上海 200025)
6.上海中医药大学针灸推拿学院(上海 201203)
Published:25 March 2024,
Received:13 September 2022,
Revised:11 January 2023,
扫 描 看 全 文
杨紫媛,李晨红,唐晔翎等.基于QSAR机器学习模型结合“久病致瘀”理论对丹参治疗慢性疼痛的分子机制研究[J].上海中医药大学学报,2024,38(02):71-82.
YANG Ziyuan,LI Chenhong,TANG Yeling,et al.Study on molecular mechanism of Salviae Miltiorrhizae Radix Et Rhizoma in treatment of chronic pain based on QSAR machine learning model combined with "prolonged illness leading to stasis" theory[J].Academic Journal of Shanghai University of Traditional Chinese Medicine,2024,38(02):71-82.
杨紫媛,李晨红,唐晔翎等.基于QSAR机器学习模型结合“久病致瘀”理论对丹参治疗慢性疼痛的分子机制研究[J].上海中医药大学学报,2024,38(02):71-82. DOI: 10.16306/j.1008-861x.2024.02.011.
YANG Ziyuan,LI Chenhong,TANG Yeling,et al.Study on molecular mechanism of Salviae Miltiorrhizae Radix Et Rhizoma in treatment of chronic pain based on QSAR machine learning model combined with "prolonged illness leading to stasis" theory[J].Academic Journal of Shanghai University of Traditional Chinese Medicine,2024,38(02):71-82. DOI: 10.16306/j.1008-861x.2024.02.011.
目的
2
运用定量结构‑活性关系(QSAR)机器学习模型和分子对接技术预测丹参治疗慢性疼痛相关的活性成分,并结合“久病致瘀”理论以及网络药理学探讨丹参治疗慢性疼痛的分子机制。
方法
2
首先通过中药系统药理学数据库与分析平台(TCMSP)和人类基因组数据库(GeneCards)收集丹参化学成分和慢性疼痛作用靶点,筛选核心靶标,通过STRING数据库进行蛋白质相互作用(PPI)网络分析;然后对交集靶标进行基因本体(GO)富集分析和京都基因与基因组百科全书(KEGG)通路富集分析;最后运用QSAR机器学习模型以及分子对接技术筛选丹参治疗慢性疼痛的活性成分和核心靶点。
结果
2
①筛选获得丹参与慢性疼痛的交集靶标55个、潜在活性成分55个,通过PPI分析发现丝氨酸/苏氨酸激酶1(AKT1)、表皮生长因子受体(EGFR)、白介素(IL)-6等核心靶标;②通过功能富集分析得到细胞组成45个,分子功能87个,生物过程1 450个,信号通路140条,涉及磷脂酰肌醇-3-激酶/蛋白激酶B(PI3K/AKT)、IL-17、缺氧诱导因子1(HIF-1)、环磷腺苷(cAMP)、丝裂原活化蛋白激酶(MAPK)等信号通路;③通过QSAR模型和分子对接发现丹参中的鼠尾草呋萘嵌苯、表丹参螺缩酮内脂、salvianan A、异丹参酮Ⅱ和丹酚酸C是治疗慢性疼痛的活性成分。
结论
2
丹参治疗慢性疼痛的活性成分为二萜类化合物,其作用机制可能与调节AKT1介导的信号通路密切相关。
Objective: To predict the active components of Salviae Miltiorrhizae Radix Et Rhizoma in the treatment of chronic pain using quantitative structure-activity relationship (QSAR) machine learning model and molecular docking technology, and to explore the molecular mechanism of Salviae Miltiorrhizae Radix Et Rhizoma in the treatment of chronic pain combined with the theory of "prolonged illness leading to stasis" and network pharmacology.
Methods
2
First, the chemical components of Salviae Miltiorrhizae Radix Et Rhizoma and targets of chronic pain were collected through the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP) and the Human Genome database (GeneCards), and the core targets were screened. And the protein interaction (PPI) network was analyzed by STRING database. Then, the intersection targets were analyzed by Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Finally, the QSAR machine learning model and molecular docking technology were used to screen the active ingredients and core targets of Salviae Miltiorrhizae Radix Et Rhizoma in the treatment of chronic pain.
Results
2
①Fifty-five intersection targets and 55 potential active components of Salviae Miltiorrhizae Radix Et Rhizoma in the treatment of chronic pain were screened. The core targets such as serine/threonine kinase 1(AKT1), epidermal growth factor receptor (EGFR) and interleukin (IL)-6 were found through PPI analysis. ②Through the function enrichment analysis, 45 cell components, 87 molecular functions, 1 450 biological processes and 140 signaling pathways were obtained, involving signaling pathways such as phosphatidylinositol-3-kinase/protein kinase B(PI3K/AKT), IL-17, hypoxia-inducible factor 1(HIF-1), cyclic adenosine monophosphate (cAMP), and mitogen-activated protein kinases (MAPK) signaling pathway. ③Through QSAR model and molecular docking, it was found that salvilenone, epidanshenspiroketallactone, salvianan A, isotanshinone Ⅱ and salvianolic acid C in Salviae Miltiorrhizae Radix Et Rhizoma were the active components for treating chronic pain.
Conclusion
2
The active components of Salviae Miltiorrhizae Radix Et Rhizoma in treating chronic pain are diterpenoids, and its mechanism of action is probably related to the regulation of AKT1-mediated signaling pathways.
慢性疼痛丹参定量构效关系机器学习网络药理学
chronic painSalviae Miltiorrhizae Radix Et Rhizomaquantitative structure-activity relationship (QSAR)machine learningnetwork pharmacology
孙琳,刘慧. 抗抑郁药在慢性疼痛中的应用[J]. 华西医学,2008, 23(2): 422-423.
SUN L,LIU H. The application of antidepressants in chronic pain[J]. West China Medical Journal, 2008, 23(2): 422-423.
胡艳君,陈理红,魏安宁. 慢性疼痛在儿童和青少年中的研究进展[J]. 重庆医学, 2015, 44(22): 3149-3151.
HU Y J,CHEN L H,WEI A N. Research progress on chronic pain in children and adolescents[J]. Chongqing Medicine, 2015, 44(22): 3149-3151.
罗尔丹,王遥,卞鹰. 我国老年人慢性疼痛特点及近年变化趋势——基于中国健康与养老追踪调查数据[J]. 实用老年医学,2021, 35(7): 684-687.
LUO E D,WANG Y,BIAN Y. Characteristics and trends of chronic pain among the Chinese elderly——based on China Health and Retirement Longitudinal Study[J]. Practical Geriatrics, 2021, 35(7): 684-687.
林国盟. 论疼痛的病因病机及临床意义[D]. 济南:山东中医药大学, 2012.
LIN G M. Causes and pathogenesis of pain in Traditional Chinese Medicine (TCM) clinical practice[D]. Jinan: Shandong University of Traditional Chinese Medicine, 2012.
魏莉,鞠萍,周广明. 丹参与四物汤功效辨析[J]. 中国现代药物应用, 2011, 5(16): 52-53.
WEI L,JU P,ZHOU G M. Analysis of the Efficacy of Danshen and Siwu Tang[J]. Chinese Journal of Modern Drug Application, 2011, 5(16): 52-53.
马玉清. 丹参酮ⅡA调控HMGB1-TLR4通路抑制脊神经结扎大鼠病理性痛觉过敏[D]. 兰州:兰州大学, 2014.
MA Y Q. Tanshinone ⅡA down-regulates HMGB1 and TLR4 expression in a spinal nerve ligation model of neuropathic pain[D]. Lanzhou: Lanzhou University, 2014.
ZHANG W ,XUE K,GAO Y,et al. Systems pharmacology dissection of action mechanisms of Dipsaci Radix for osteoporosis[J]. Life Sci, 2019, 235(9773): 116820.
赵全如,谢晓燕. 丹参的化学成分及药理作用研究进展[J]. 广东化工, 2021, 48(1): 57-59.
ZHAO Q R,XIE X Y. Research Progress of Phytochemistry,Pharmacological Action of Salvia Miltiorrhiza[J]. Guangdong Chemical Industry, 2021, 48(1): 57-59.
MEIM X D,CAO Y F,CHE Y Y,et al. Danshen:a phytochemical and pharmacological overview[J].Chin J Nat Med, 2019, 17(1): 59.
王云龙,房岐,郑超. 丹参化学成分、药理作用及质量控制研究进展[J]. 中国药业, 2020, 29(15): 6-10.
WANG Y L,FANG Q,ZHENG C. Research Progress of Phytochemistry,Pharmacological Action and Quality Control of Salvia Miltiorrhiza[J]. China Pharmaceuticals, 2020, 29(15): 6-10.
DON M J,SHEN C C,SYU W J,et al. Cytotoxic and aromatic constituents from Salvia miltiorrhiza[J]. Phytochemistry, 2006, 67(5): 497.
LIN H C,CHANG W L. Phytochemical and pharmacological study on Salia miltiorrhiza (Ⅰ) -isolation of new tanshinones[J]. Chin Pharmacol J, 1991, 43(1): 11.
LIANG W,CHEN W,WU L,et al. Quality evaluation and chemical markers screening of Salvia miltiorrhiza Bge.(Dan-shen)based on HPLC fingerprints and HPLC-MSn coupled with chemometrics[J]. Molecules, 2017, 22(3): 478.
孔德云,刘星堦. 丹参中二氢异丹参酮Ⅰ的结构[J]. 药学学报, 1984, 19(10): 755-759.
KONG D Y,LIU X J. Structure of Dihydroisotanshinone I in Danshen[J]. Acta Pharmaceutica Sinica, 1984, 19(10): 755-759.
HAN Y M,OH H,NA M K,et al. PTP1B inhibitory effect of abietane diterpenes isolated from Salvia miltiorrhiza[J]. Biol Pharm Bull, 2005, 28(9): 1795.
LEE A R,WU W L,CHANG W L, et al. Isolation and bioactivity of new tanshinones[J]. J Nat Prod, 1987, 50(2): 157.
LUO H W,SUN X R,NIWA M. Diterpenoids from Salvia paramiltiorrhiza[J]. ChemInform, 1995, 26(7): 2473-2479.
DANHEISER R L,CASEBIER D S,LOEBACH J L. Total synthesis of danshen diterpenoid quinones[J]. Tetrahedron Lett,1992, 33(9): 1149.
DING C,CHEN H,LIANG B,et al. Biomimetic synthesis of the natural product salviadione and its hybrids:discovery of tissue-specific anti-inflammatory agents for acute lung injury[J]. Chem Sci, 2019, 10(17): 4667.
TIAN Y,SUN Z,WANG W,et al. Semisynthesis and biological evaluation of oleanolic acid 3-O-β-D-glucuronopyranoside derivatives for protecting H9C2 cardiomyoblasts against H2O2-inducedinjury[J]. Molecules, 2018, 23(1): 44.
杨帆,戚莹雪,张永清. 丹参地上部分化学成分与药理作用研究进展[J]. 中成药, 2020, 42(6): 1558-1564.
YANG F,QI Y X,ZHANG Y Q. Research progress on chemical constituents and pharmacological effects of aerial parts of salvia miltiorrhiza Bge[J]. Chinese Traditional Patent Medicine, 2020, 42(6): 1558-1564.
万新焕,王瑜亮,周长征,等. 丹参化学成分及其药理作用研究进展[J]. 中草药, 2020, 51(3): 788-798.
WAN X H,WANG Y L,ZHOU C Z,et al. Research progress on chemical constituents and pharmacological effects of Salvia miltiorrhiza[J]. Chinese Traditional and Herbal Drugs, 2020, 51(3): 788-798.
陈凌霆,张静宇,赵娅敏,等. 丹参有效成分的研究进展[J]. 山东化工, 2018, 47(20): 38-41.
CHEN L T,ZHANG J Y,ZHAO Y M,et al. Research progress on active ingredients of Salvia miltiorrhiza[J]. Shandong Chemical Industry, 2018, 47(20): 38-41.
李思谦,章顺楠,周立红,等. 丹参中酚酸类成分及在水溶液中降解转化研究进展[J]. 辽宁中医药大学学报, 2020, 22(4): 109-117.
LI S Q,ZHANG S N,ZHOU L H,et al. Research Progress on Salvianolic Acids' Degradation and Transformation in Aqueous Solution from Salvia Miltiorrhiza[J]. Journal of Liaoning University of Traditional Chinese Medicine, 2020, 22(4): 109-117.
杜涛,袁文茜,曹伯旭,等. 慢性神经病理性疼痛[J]. 中国疼痛医学杂志, 2021, 27(7): 481-485.
DU T,YUAN W Q,CAO B X,et al. Chronic neuropathic pain [J]. Chinese Journal of Pain Medicine, 2021, 27(7): 481-485.
赵薇,巩颖,顾媛媛,等. 中药治疗慢性疼痛的临床应用及特色[J]. 中国医院用药评价与分析, 2021, 21(5): 637-640.
ZHAO W,GONG Y,GU Y Y,et al. Clinical Application and Characteristics of Traditional Chinese Medicine in the Treatment of Chronic Pain[J]. Evaluation and Analysis of Drug-Use in Hospitals of China, 2021, 21(5): 637-640.
孙宁,孙睿睿,周园芳,等. 针刺治疗慢性疼痛的功能磁共振研究述评[J]. 世界科学技术-中医药现代化, 2021, 23(1): 225-231.
SUN N,SUN R R,ZHOU Y F,et al. A Narrative Review of fMRI Researches on Acupuncture Treatment of Chronic Pain[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2021, 23(1): 225-231.
陈李圳,景向红,代金刚. 太极拳和八段锦缓解慢性疼痛机制的研究进展[J]. 中医杂志, 2021, 62(2): 173-178.
LI Z,JING X H,DAI J G. Research Progress on the Mechanism of Tai Chi and Ba Duan Jin in Relieving Chronic Pain[J]. Journal of Traditional Chinese Medicine, 2021, 62(2): 173-178.
毛丽斯,朱晓红. 网络药理学在中药领域的应用进展[J]. 中医药管理杂志, 2021, 29(13): 98-102.
MAO L S,ZHU X H. The application progress of network pharmacology in the field of traditional Chinese medicine[J]. Journal of Traditional Chinese Medicine Management, 2021, 29(13): 98-102.
杨力龙,苏华珍,卢新丽,等. 网络药理学在中药及其复方中应用的研究进展[J]. 大众科技, 2021, 23(3): 55-57.
YANG L L, SU H Z, LU X L,et al. Research Progress on Application of Network Pharmacology in Traditional Chinese Medicine and Its Compound Prescription[J]. Popular Science & Technology, 2021, 23(3): 55-57.
WANG Y L,LI J Y,SHI X X,et al. Web-Based Quantitative Structure-Activity Relationship Resources Facilitate Effective Drug Discovery[J]. Top Curr Chem (Cham), 2021, 379(6): 37.
PATRÍCIO R P S,VIDEIRA P A,PEREIRA F. A computer-aided drug design approach to discover tumour suppressor p53 protein activators for colorectal cancer therapy[J]. Bioorg Med Chem,2022, 1(53): 116530.
ISHOLA A A,ADEDIRIN O,JOSHI T,et al. QSAR modeling and Pharmacoinformatics of SARS coronavirus 3C-like protease inhibitors[J]. Comput Biol Med, 2021, 7(134): 104483.
张茹玉,叶潘,李月潞,等.抗乳腺癌基质金属蛋白酶9类抑制剂的分子设计研究[J].成都医学院学报, 2021, 16(5): 571-576.
ZHANG R Y,YE P,LI Y L,et al. Molecular Design for Matrix metalloproteinase-9 Inhibitors as Anti-breast Cancer Drug[J]. Journal of Chengdu Medical College, 2021, 16(5): 571-576.
汪祺,闫明,马双成,等. 基于定量构效关系的何首乌毒性单体成分预测[J]. 中国药物警戒, 2021, 18(4): 352-355, 360.
WANG Q,YAN M,MA S C,et al. Predicting Toxic Monomer Components in Polygonum multiflorum Based on Quantitative Structure-activity Relationship[J]. Chinese Journal of Pharmacovigilance, 2021, 18(4): 352-355,360.
MEIM X D,CAO Y F,CHE Y Y,et al. Danshen:a phytochemical and pharmacological overview[J]. Chin J Nat Med. 2019, 17(1): 59-80.
邹吉宇,庞立健,吕晓东. 基于网络药理学探讨丹参治疗肺纤维化的作用机制[J]. 中国药理学与毒理学杂志, 2023, 37(S1): 32.
ZOU J Y, PANG L J, LV X D. Mechanism of Danshen (Salviae Miltiorrhizae Radix Et Rhizoma) Treating Pulmonary Fibrosis Based on Network Pharmacology[J]. Chinese Archives of Traditional Chinese Medicine, 2023, 37(S1): 32.
CHEN W,CHEN G. Danshen (Salvia miltiorrhiza Bunge): A Prospective Healing Sage for Cardiovascular Diseases[J]. Curr Pharm Des, 2017, 23(34): 5125-5135.
张明阳. 外周FGFR1通过PI3K/AKT通路调节肌筋膜疼痛扳机点[D]. 济南:山东大学, 2021.
ZHANG M Y. Peripheral FGFR1 regulates myofascial pain trigger points via the PI3K/AKT pathway[D]. Jinan: Shandong University, 2021.
陈晓薇. 配体门控型P2X7受体介导的AKT信号通路在慢性疼痛中的调控机制研究[D]. 宁波:宁波大学, 2018.
CHEN X W. The regulatory mechanism of ligand gated P2X7 receptor mediated AKT signaling pathway in chronic pain[D]. Ningbo: Ningbo University, 2018.
李阔韬,李顺堂,蓝玲,等. EGFR及其信号通路在神经病理性疼痛中的作用[J]. 中国神经免疫学和神经病学杂志, 2020, 27(6): 474-479.
LI K T,LI S T,LAN L,et al. The role of EGFR and its signaling pathway in neuropathic pain[J]. Chinese Journal of Neuroimmunology and Neurology, 2020, 27(6): 474-479.
0
Views
0
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution