Published:25 March 2024,
Received:22 September 2023,
Revised:31 January 2024
Scan for full text
Cite this article
Molecular targeted therapy is one of the main treatment options for metastatic colorectal cancer (mCRC), and combined with chemotherapy, it can provide significant benefits in patients' overall survival (OS) and progression-free survival (PFS). Commonly used molecular targeted drugs in clinic mainly includes small molecule signal transduction inhibitors and large molecule monoclonal antibodies. However, the problem of drug resistance in the later stage of targeted therapy becomes a key challenge for clinic treatment. Studies have shown that the mechanism of targeted drug resistance may be related to a variety of factors, including abnormalities in related cell signaling pathways such as epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF), human epidermal growth factor receptor 2 (HER2) and alterations in tumor microenvironment. In recent years, studies have found that traditional Chinese medicine are quite effective in reversing targeted drug resistance. Therefore, this article discusses the mechanisms of drug resistance to molecular targeted therapy in CRC, as well as the coping strategies of traditional Chinese medicine, and discusses the tradional Chinese medicine and its active ingredients that can reverse targeted drug resistance.
结直肠癌(colorectal cancer,CRC)为消化系统最常见恶性肿瘤之一,其发病率及病死率在世界恶性肿瘤中分别居第3位及第2位[
分子靶向药物有小分子信号传导抑制剂与大分子单克隆抗体之分,前者能特异性阻断肿瘤生长、增殖所需的信号传导通路,从而抑制癌细胞生长,后者利用抗原抗体特异性结合鉴别肿瘤细胞并进一步将其消灭[
随着国家对中医药“守正创新、传承发展”工作的深入开展,迫切需要全面整合中西医学理论、技术等资源优势开展具有中医药特色的临床研究。因此,为了进行逆转CRC靶向耐药的中医药特色研究,需要充分利用现代科学技术与方法了解CRC分子靶向耐药的机制。目前,CRC耐药和转移的关键分子包括血管内皮生长因子(VEGF)、表皮生长因子受体(EGFR)、人类表皮生长因子受体2(HER2)等[
VEGF信号通路是肿瘤血管形成的最主要机制之一,因此针对VEGF分子靶向药物在临床上广泛应用。根据靶点特异性和给药途径的不同,抗VEGF药物可分为贝伐珠单抗、阿柏西普、雷莫芦单抗和瑞戈非尼等[
抗VEGF药物耐药的主要机制可能与VEGF亚型代偿性表达上调以及刺激血管生成因子的生成和分泌有关。贝伐珠单抗抑制VEGF-A,可使VEGF其他亚型(PIGF、VEGF-C、VEGF-D)代偿性表达上调。细胞实验表明,贝伐单珠抗适应的细胞表现出VEGF/VEGF-R家族成员的冗余表达水平增加且VEGF-R1磷酸化(p-VEGF-R1)和p-VEGF-R3水平升高[
EGFR属于受体酪氨酸激酶的ErbB家族,参与细胞生长、存活、迁移、黏附和血管生成。西妥昔单抗和帕尼单抗是针对EGFR的两种单克隆抗体,对治疗mCRC有良好的临床疗效。西妥昔单抗或帕尼单抗联合标准化疗方案用于RAS/BRAF野生型CRC患者的一线治疗[
然而随着治疗的进展,大约80%使用EGFR抗体靶向治疗的患者会产生耐药[
有学者认为EGFR胞外结构域S492R突变是CRC继发性耐药分子机制之一,原因是CRC患者的EGFR胞外结构域S492R突变使EGFR不能与西妥昔单抗结合[
HER2是erbB家族的另一个原癌基因,其在CRC中相对罕见,发生率低于5% [
c-Met扩增在临床确定为BRAF突变CRC对EGFR和BRAF双或三重阻断组合耐药的一种新机制。从EGFR转换为MET抑制,同时维持BRAF抑制,在MET驱动获得性耐药发生后导致临床获益[
目前,现代医学对抗靶向方案耐药性的策略包括新型靶向药物、多靶向方案组合、代谢调节剂和免疫疗法[
中药 | 成分 | 研究病例数 | 临床疗效 |
---|---|---|---|
黄慈颗粒 | 女贞子、肉苁蓉、蛇莓、郁金香、丹参、五叶树果 | 治疗组160例、对照组160例 |
延长PFS,改善生活质量,减少不良反应[ |
合众颗粒 | 生姜、人参、黄芩、黄连、吴茱萸、半夏等 | 治疗组180例、对照组180例 |
延长PFS、改善生活质量、减少不良反应[ |
改良葛根芩连颗粒 | 葛根、黄芩、黄连、木香、椿皮、冬瓜皮 | 治疗组60例、对照组60例 |
改善生活质量[ |
健脾解毒方 | 野葡萄藤、八月札、黄芪、白术、薏苡仁、党参 | 治疗组69例、对照组68例 |
改善生活质量[ |
益气逐瘀汤 | 人参、槐花、川芎、莪术、党参、黄芪、白术、当归、炙甘草、白芍、刺五加、白花蛇舌草、黄芩等 | 治疗组60例、对照组60例 |
改善患者OS[ |
注: PFS为无进展生存期;OS为总生存期。
CRC靶向耐药多因患者抗癌无力,加重细胞的缺血缺氧,导致药物的分解、吸收、转运能力下降。根据临床辨证,中医治法治则主要包括以下几个方面:①扶正益气:晚期CRC患者身体虚弱,免疫力下降,中医强调扶正益气,应用中药调理,如补气药物、益气补中药物等,以调理体内的阴阳平衡,增强机体的免疫功能,促进机体分解、吸收药物[
尽管现代科学研究从多角度、多维度解释了mCRC分子靶向药物耐药的原因,为逆转剂的开发提供了基础,然而在开发新技术、研发新型药物方面进步缓慢。反观近年来中医药因其多成分、多靶点、多阶段的特性,在提高肿瘤患者免疫力、增强抗肿瘤药物敏感性和克服肿瘤耐药性方面,具有独特的优势和巨大的潜力。目前已研究的中药主要为补益药、清热解毒药、理气活血药和温阳散寒药等,这些中药仅是中医药伟大宝库的灵光片羽,亟待研究者努力发掘、传承和创新。
黄芪、党参、白术、薏苡仁、猪苓、红藤等组成的健脾解毒方,通过抑制结直肠癌细胞的增殖,减少P-糖蛋白(P-gp)和多重耐药蛋白1(MDR1)的表达,提高药物在细胞中的浓度,从而逆转肿瘤细胞的耐药性,而其外在表现则主要为单一基因突变或表达上调所导致的表型改变[
中药中的活性成分具有多种药用特性,如抗氧化、抗癌、抗菌等作用,是新药开发的重要来源,在逆转CRC耐药方面近来也多有研究。白藜芦醇是一种多酚类化合物,通过调节miR-31-5P表达,进而抑制Akt/Bcl-2信号通路,使对西妥昔单抗耐药的CRC细胞重新对西妥昔单抗敏感[
通过对CRC靶向药物耐药机制的学习以及现有抗耐药中药研究的总结,不难发现,尽管耐药机制具有复杂性和交叉性,但中药具有多靶点、多途径的独特优势。目前,白藜芦醇、姜黄素等多种中药活性成分已被广泛应用于对抗耐药相关研究,但对于中药复方的研究数量相对较少,且大多是体外实验,在很大程度上缺乏临床研究。因此,我们应在现有研究的基础上,继续致力于发掘经方、验方,用现代手段研究中药复方的整体机制,结合“以方测证”方法,从方药的性味、功效出发,通过对目标患者群体进行望、闻、问、切所得的资料进行综合分析,对恶性肿瘤某一阶段或某一类型的病变本质进行归纳总结,观察临床药效反应。此外,积极开展中药逆转剂的药理和代谢组学研究,并在此基础上开展大样本随机对照临床研究,观察其在临床治疗过程中逆转mCRC患者耐药的实际效果,为中医药治疗mCRC提供更高水平的证据。
SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. [Baidu Scholar]
CIARDIELLO F, CIARDIELLO D, MARTINI G, et al. Clinical management of metastatic colorectal cancer in the era of precision medicine[J]. CA Cancer J Clin. 2022, 72(4): 372-401. [Baidu Scholar]
杜飞, 董亚萍, 朴成钢. 结肠癌靶向治疗的研究进展[J]. 生命的化学, 2018, 38(2): 259-266. [Baidu Scholar]
DU F, DONG Y P, PU C G. Research progress on targeted therapy of colon cancer[J]. Chemistry of Life, 2018, 38(2): 259-266. [Baidu Scholar]
CREMOLINI C, ANTONIOTTI C, ROSSINI D, et al. Upfront FOLFOXIRI plus bevacizumab and reintroduction after progression versus mFOLFOX6 plus bevacizumab followed by FOLFIRI plus bevacizumab in the treatment of patients with metastatic colorectal cancer (TRIBE2): a multicentre, open-label, phase 3, randomised, controlled trial[J]. Lancet Oncol, 2020, 21(4): 497-507. [Baidu Scholar]
薛颖, 李琦. 结直肠癌的靶向治疗及其耐药机制[J]. 世界临床药物, 2017, 38(11): 721-726. [Baidu Scholar]
XUE Y, LI Q, et al. Targeted therapy of colorectal cancer and its drug resistance mechanism[J]. World Clinical Drug, 2017, 38(11): 721-726. [Baidu Scholar]
LI Y, CHEN X, LI W, et al. Combination of AntiEGFR and Anti-VEGF Drugs for the Treatment of Previously Treated Metastatic Colorectal Cancer: A Case Report and Literature Review[J]. Front Oncol, 2021, 11: 684309. [Baidu Scholar]
ROSEN L S, JACOBS I, BURKES R. Bevacizumab in Colorectal Cancer: Current Role in Treatment and the Potential of Biosimilars[J]. Target Oncol, 2017, 12(5): 599-610. [Baidu Scholar]
TABERNERO J, YOSHINO T, COHN A L, et al. Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): a randomised, double-blind, multicentre, phase 3 study[J]. Lancet Oncol, 2015, 16(5): 499-508. [Baidu Scholar]
KAWAZOE A, ANDO T, HOSAKA H, et al. Safety and activity of trifluridine/tipiracil and ramucirumab in previously treated advanced gastric cancer: an open-label, single-arm, phase 2 trial[J]. Lancet Gastroenterol Hepatol, 2021, 6(3): 209-217. [Baidu Scholar]
TOMIDA C, YAMAGISHI N, NAGANO H, et al. VEGF pathway-targeting drugs induce evasive adaptation by activation of neuropilin-1/cMet in colon cancer cells[J]. Int J Oncol, 2018, 52(4): 1350-1362. [Baidu Scholar]
SINGH S, GOMEZ H J, THAKKAR S, et al. Overcoming Acquired Drug Resistance to Cancer Therapies through Targeted STAT3 Inhibition[J]. Int J Mol Sci, 2023, 24(5): 4722. [Baidu Scholar]
YOSHINO T, PORTNOY D C, OBERMANNOVÁ R, et al. Biomarker analysis beyond angiogenesis: RAS/RAF mutation status, tumour sidedness, and second-line ramucirumab efficacy in patients with metastatic colorectal carcinoma from RAISE-a global phase Ⅲ study[J]. Ann Oncol, 2019, 30(1): 124-131. [Baidu Scholar]
WANG Y, LEI F, RONG W, et al. Positive feedback between oncogenic KRAS and HIF-1α confers drug resistance in colorectal cancer[J]. Onco Targets Ther, 2015, 8: 1229-1237. [Baidu Scholar]
LOREE J M, DOWERS A, TU D, et al. Expanded low allele frequency RAS and BRAF V600E testing in metastatic colorectal cancer as predictive biomarkers for cetuximab in the randomized CO.17 trial[J]. Clin Cancer Res, 2021, 27(1): 52-59. [Baidu Scholar]
LOFT M, SHAPIRO J, LEE M, et al. Compliance with Therapeutic Goods Association prescribing information: weekly or second weekly cetuximab for the treatment of metastatic colorectal cancer[J]. Intern Med J, 2023, 53(9): 1610-1617. [Baidu Scholar]
CREMOLINI C, ANTONIOTTI C, LONARDI S, et al. Activity and safety of cetuximab plus modified FOLFOXIRI followed by maintenance with cetuximab or bevacizumab for RAS and BRAF wild-type metastatic colorectal cancer: a randomized phase 2 clinical trial[J]. JAMA Oncol, 2018, 4(4): 529-536. [Baidu Scholar]
ARNOLD D, LUEZA B, DOUILLARD J Y, et al. Prognostic and predictive value of primary tumour side in patients with Ras wild-type metastatic colorectal cancer treated with chemotherapy and EGFR directed antibodies in six randomized trials[J]. Ann Oncol, 2017, 28(8): 1713-1729. [Baidu Scholar]
MARTINELLI E, CIARDIELLO D, MARTINI G, et al. Implementing anti-epidermal growth factor receptor (EGFR) therapy in metastatic colorectal cancer: challenges and future perspectives[J]. Ann Oncol, 2020, 31(1): 30-40. [Baidu Scholar]
杨利梅,张影茹,程悦蕾, 等. 靶向表皮生长因子受体治疗结直肠癌的耐药机制及中药研究进展[J]. 上海中医药杂志, 2022, 56(2): 81-86. [Baidu Scholar]
YANG L M, ZHANG Y R, CHENG Y L, et al. Resistance mechanism of EGFR targeted therapy for colorectal cancer and research progress of traditional Chinese herbal medicines[J]. Shanghai Journal of Traditional Chinese Medicine, 2022, 56(2): 81-86. [Baidu Scholar]
CHANG Y Y, LIN P C, LIN H H, et al. Mutation spectra of RAS gene family in colorectal cancer[J]. Am J Surg, 2016, 212(3): 537-544. [Baidu Scholar]
YAEGER R, KOTANI D, MONDACA S, et al. Response to antiEGFR therapy in patients with BRAF non-V600-mutant metastatic colorectal cancer[J]. Clin Cancer Res, 2019, 25(23): 7089-7097. [Baidu Scholar]
BOKU S, WATANABE M, SUKENO M, et al. Deactivation of glutaminolysis sensitizes PIK3CA-mutated colorectal cancer cells to aspirin-induced growth inhibition[J]. Cancers (Basel), 2020, 12(5): 1097. [Baidu Scholar]
DONG Q, SHI B, ZHOU M, et al. Growth suppression of colorectal cancer expressing S492R EGFR by monoclonal antibody CH12[J]. Front Med, 2019, 13(1): 83-93. [Baidu Scholar]
YUAN H H, ZHANG X C, WEI X L, et al. LncRNA UCA1 mediates Cetuximab resistance in Colorectal Cancer via the MiR-495 and HGF/c-MET Pathways[J]. J Cancer, 2022, 13(1): 253-267. [Baidu Scholar]
LU Y, ZHAO X, LIU Q, et al. lncRNA MIR100HG-derived miR-100 and miR-125b mediate cetuximab resistance via Wnt/β-catenin signaling[J]. Nat Med, 2017, 23(11): 1331-1341. [Baidu Scholar]
YONESAKA K. HER2-/HER3-Targeting Antibody-Drug Conjugates for Treating Lung and Colorectal Cancers Resistant to EGFR Inhibitors[J]. Cancers (Basel), 2021, 13(5): 1047. [Baidu Scholar]
DE CUYPER A, VAN DEN EYNDE M, MACHIELS J P. HER2as a predictive biomarker and treatment target in colorectal cancer[J]. Clin Colorectal Cancer, 2020, 19(2): 65-72. [Baidu Scholar]
TAKEGAWA N, YONESAKA K. HER2 as an emerging oncotarget for colorectal cancer treatment after failure of anti-epidermal growth factor receptor therapy[J]. Clin Colorectal Cancer, 2017, 16(4): 247-251. [Baidu Scholar]
YONESAKA K, ZEJNULLAHU K, OKAMOTO I, et al. Activation of ERBB2 signaling causes resistance to the EGFR-directed therapeutic antibody cetuximab[J]. Sci Transl Med, 2011, 3(99): 99ra86. [Baidu Scholar]
TAKEGAWA N, YONESAKA K, SAKAI K, et al. HER2 genomic amplification in circulating tumor DNA from patients with cetuximab-resistant colorectal cancer[J]. Oncotarget, 2016, 7(3): 453-460. [Baidu Scholar]
BERTOTTI A, MIGLIARDI G, GALIMI F, et al. A molecularly annotated platform of patient-derived xenografts ("xenopatients") identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer[J]. Cancer Discov, 2011, 1(6): 508-523. [Baidu Scholar]
PIETRANTONIO F, ODDO D, GLOGHINI A, et al. MET-Driven Resistance to Dual EGFR and BRAF Blockade May Be Overcome by Switching from EGFR to MET Inhibition in BRAF-Mutated Colorectal Cancer[J]. Cancer Discov, 2016, 6(9): 963-971. [Baidu Scholar]
TANG Y, LI D, DUAN J, et al. Resistance to targeted therapy in metastatic colorectal cancer: Current status and new developments[J]. World J Gastroenterol, 2023, 29(6): 926-948. [Baidu Scholar]
WOOLSTON A, KHAN K, SPAIN G, et al. Genomic and Transcriptomic Determinants of Therapy Resistance and Immune Landscape Evolution during Anti-EGFR Treatment in Colorectal Cancer[J]. Cancer Cell, 2019, 36(1): 35-50, e9. [Baidu Scholar]
LIU N, WU C, JIA R, et al. Traditional Chinese Medicine Combined With Chemotherapy and Cetuximab or Bevacizumab for Metastatic Colorectal Cancer: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial[J]. Front Pharmacol, 2020, 11: 478. [Baidu Scholar]
WANG Q, LI Z, GUO J, et al. Effect of Chinese herbal medicine formula on progression-free survival among patients with metastatic colorectal cancer: Study protocol for a multi-center, double-blinded, randomized, placebo-controlled trial[J]. PLoS One, 2022, 17(12): e0275058. [Baidu Scholar]
WANG Z, WANG X, LI J, et al. The efficacy and safety of modified Gegenqinlian Fomular for advanced colorectal cancer (damp heat accumulation type): A multicenter randomized controlled trial[J]. Medicine (Baltimore), 2021, 100(49): e27850. [Baidu Scholar]
FU X, ZHANG Y, CHANG L, et al. The JPJDF has Synergistic Effect with Fluoropyrimidine in the Maintenance Therapy for Metastatic Colorectal Cancer[J]. Recent Pat Anticancer Drug Discov, 2020, 15(3): 257-269. [Baidu Scholar]
CAO B, LI S T, LI Z, et al. Yiqi zhuyu decoction combined with FOLFOX-4 as first-line therapy in metastatic colorectal cancer[J]. Chin J Integr Med, 2011 , 17(8): 593-599. [Baidu Scholar]
SUI H, ZHU H R, WU J, et al. Effects of Jianpi Jiedu Recipe on reversion of P-glycoprotein-mediated multidrug resistance through COX-2 pathway in colorectal cancer[J]. Chin J Integr Med, 2014, 20(8): 610-617. [Baidu Scholar]
SUI H, PAN S F, FENG Y, et al. Zuo Jin Wan reverses P-gpmediated drug-resistance by inhibiting activation of the PI3K/Akt/NF-κB pathway[J]. BMC Complement Altern Med, 2014, 14: 279. [Baidu Scholar]
周晶,卫真真,浦匀舟, 等. 左金丸逆转KRAS突变型大肠癌西妥昔单抗耐药的作用机制研究[J]. 上海中医药杂志, 2023, 57(5): 37-45. [Baidu Scholar]
ZHOU J, WEI Z Z, PU Y Z, et al. Effect and mechanism of Zuojin Wan on reversing cetuximab resistance in KRAS mutant colorectal cancer[J]. Shanghai Journal of Traditional Chinese Medicine, 2023, 57(5): 37-45. [Baidu Scholar]
李杰. 乌梅丸对耐西妥昔单抗人结直肠癌细胞的影响及机制研究[D]. 南京:南京中医药大学, 2023. [Baidu Scholar]
LI J. Effect and mechanism of umeboshi tablets on cetuximab-resistant human colorectal cancer cells[D]. Nanjing: Nanjing University of Chinese Medicine, 2023. [Baidu Scholar]
SUI H, DUAN P, GUO P, et al. Zhi Zhen Fang formula reverses Hedgehog pathway mediated multidrug resistance in colorectal cancer[J]. Oncol Rep, 2017, 38(4): 2087-2095. [Baidu Scholar]
杜沅原. 白藜芦醇对结直肠癌获得性西妥昔单抗耐药的逆转及机制研究[D]. 南京:南京医科大学. 2019. [Baidu Scholar]
DU R Y. Mechanism ofresveratrol reverse acquired cetuximab resistance in colorectal cancer[D]. Nanjing: Nanjing Medical University, 2019. [Baidu Scholar]
HE W T, ZHU Y H, ZHANG T, et al. Curcumin Reverses 5-Fluorouracil Resistance by Promoting Human Colon Cancer HCT-8/5-FU Cell Apoptosis and Down-regulating Heat Shock Protein 27 and P-Glycoprotein[J]. Chin J Integr Med, 2019, 25(6): 416-424. [Baidu Scholar]
SU P, YANG Y, WANG G, et al. Curcumin attenuates resistance to irinotecan via induction of apoptosis of cancer stem cells in chemoresistant colon cancer cells[J]. Int J Oncol, 2018, 53(3): 1343-1353. [Baidu Scholar]
LU W D, QIN Y, YANG C, et al. Effect of curcumin on human colon cancer multidrug resistance in vitro and in vivo[J]. Clinics (Sao Paulo), 2013, 68(5): 694-701. [Baidu Scholar]
WENG W, GOEL A. Curcumin and colorectal cancer: An update and current perspective on this natural medicine[J]. Semin Cancer Biol, 2022, 80: 73-86. [Baidu Scholar]
白利平, 康向鹏, 林立,等. 自噬介导的雷公藤甲素提高西妥昔单抗对SW480细胞治疗效果的实验研究[J]. 中国药理学通报, 2019, 35(3): 396-402. [Baidu Scholar]
BAI L P, KANG X P, LIN L, et al. Autophagy induced synergistic inhibitory effect of cetuximab in combination with triptolide on proliferation and metastasis of colorectal SW480 cells[J]. Chinese Pharmacological Bulletin, 2019, 35(3): 396-402. [Baidu Scholar]
CHEN P, LI X, ZHANG R, et al. Combinative treatment of betaelemene and cetuximab is sensitive to KRAS mutant colorectal cancer cells by inducing ferroptosis and inhibiting epithelial-mesenchymal transformation[J]. Theranostics, 2020, 10(11): 5107-5119. [Baidu Scholar]
MI C, CAO X, MA K, et al. Digitoxin promotes apoptosis and inhibits proliferation and migration by reducing HIF-1alpha and STAT3in KRAS mutant human colon cancer cells[J]. Chem Biol Interact, 2022, 51: 109729. [Baidu Scholar]
WU H, FAN F, LIU Z, et al. Norcantharidin combined with EGFRTKIs overcomes HGF-induced resistance to EGFR-TKIs in EGFR mutant lung cancer cells via inhibition of Met/PI3k/Akt pathway[J]. Cancer Chemother Pharmacol, 2015, 76(2): 307-315. [Baidu Scholar]
0
Views
0
Downloads
0
CSCD
0
CNKI Cited
Related Articles
Related Author
Related Institution