1.上海市宝山区中西医结合医院呼吸危重症医学科(上海 201999)
2.上海中医药大学附属岳阳中西医结合医院中西医结合临床研究所(上海 200437)
扫 描 看 全 文
张善芳,李莉,陈瑜等.蜂毒肽的药理学及纳米运载系统研究进展[J].上海中医药大学学报,2023,37(05):83-93.
ZHANG Shanfang,LI Li,CHEN Yu,et al.Research progress in pharmacology and nano⁃delivery system of melittin[J].Academic Journal of Shanghai University of Traditional Chinese Medicine,2023,37(05):83-93.
张善芳,李莉,陈瑜等.蜂毒肽的药理学及纳米运载系统研究进展[J].上海中医药大学学报,2023,37(05):83-93. DOI: 10.16306/j.1008-861x.2023.05.012.
ZHANG Shanfang,LI Li,CHEN Yu,et al.Research progress in pharmacology and nano⁃delivery system of melittin[J].Academic Journal of Shanghai University of Traditional Chinese Medicine,2023,37(05):83-93. DOI: 10.16306/j.1008-861x.2023.05.012.
蜂毒肽(MEL)是蜂毒的主要成分,对癌症等疾病的治疗有独特的优势,然而由于MEL具有较强的毒副作用,其药物研发及临床应用一直受到阻碍。近年来药理学研究表明,MEL除具有较强的细胞膜表面活性和溶血活性外,还具有较好的生物活性和药理作用,包括抗菌、抗病毒、抗炎、抗肿瘤、抗纤维化等作用。此外,在MEL的给药系统方面也采取了多种策略,如改进MEL及其共轭物、采用纳米运载工具等。兹就MEL的药理学及纳米运载系统的研究进展进行综述,以期为今后MEL的研究提供参考。
Melittin (MEL) is the main component of bee venom and has unique advantages in the treatment of cancers and other diseases. However, due to the strong toxic and side effects of MEL, its drug development and clinical application have been hindered. Recent pharmacological studies have shown that MEL not only has strong cell membrane surface activity and hemolytic activity, but also has good biological activity and pharmacological effects, including antibacterial, antiviral, anti-inflammatory, anti-tumor, anti-fibrosis and so on. In addition, many strategies have also been adopted in the MEL drug delivery systems, such as improving MEL and its conjugates, and using nano-delivery vehicles. This article reviews the research progress of MEL's pharmacology and nano-delivery system in order to provide reference for the future research of MEL.
蜂毒肽药理学纳米运载系统抗肿瘤抗炎
melittinpharmacologynano-delivery systemanti-tumoranti-inflammatory
MEMARIANI H,MEMARIANI M. Anti-fungal properties and mechanisms of melittin[J]. Appl Microbiol Biotechnol,2020, 104(15): 6513-6526.
KIM J Y,LEEM J, HONG H L. Melittin Ameliorates Endotoxin-Induced Acute Kidney Injury by Inhibiting Inflammation, Oxidative Stress, and Cell Death in Mice[J]. Oxid Med Cell Longev,2021, 2021: 8843051.
ADADE C M,OLIVEIRA I R,PAIS J A,et al. Melittin peptide kills Trypanosoma cruzi parasites by inducing different cell death pathways[J]. Toxicon,2013, 69: 227-239.
BECHINGER B. Structure and functions of channel-forming peptides: magainins, cecropins, melittin and alamethicin[J]. J Membr Biol,1997, 156(3): 197-211.
ZHAO Q, FENG H, YANG Z,et al. The central role of a two-way positive feedback pathway in molecular targeted therapies-mediated pyroptosis in anaplastic thyroid cancer[J]. Clin Transl Med,2022, 12(2): e727.
HOSKIN D W, RAMAMOORTHY A. Studies on anticancer activities of antimicrobial peptides[J]. Biochim Biophys Acta,2008, 1778(2): 357-375.
WEHBE R, FRANGIEH J, RIMA M, et al. Bee Venom: Overview of Main Compounds and Bioactivities for Therapeutic Interests[J]. Molecules, 2019, 24(16): 2997.
CEREMUGA M, STELA M, JANIK E, et al. Melittin-A Natural Peptide from Bee Venom Which Induces Apoptosis in Human Leukaemia Cells[J]. Biomolecules,2020, 10(2): 247.
张冰清, 刘晓波. 蜂毒的主要成分及药理作用的研究进展[J]. 药学研究,2016, 35(3): 172-174.
ZHANG B Q,LIU X B. Advances in main compositions and pharmacological effects of bee venom[J]. Journal of Pharmaceutical Research, 2016, 35(3): 172-174.
MRAZ C. Health and the Honeybee [M]. Burlington, VT, USA: 1995: Queen City Publications, 1995.
BOGDANOV S. Biological and therapeutic properties of bee venom[J]. Bee Product Science,2016,
BILLINGHAM M E, MORLEY J, HANSON J M, et al. Letter: An anti-inflammatory peptide from bee venom[J]. Nature,1973, 245(5421): 163-164.
WALKER E W. BEES' STINGS AND RHEUMATISM[J]. Br Med J,1908, 2(2493): 1056-1060.
YAACOUB C, RIFI M, EL-OBEID D, et al. The Cytotoxic Effect of Apis mellifera Venom with a Synergistic Potential of Its Two Main Components-Melittin and PLA2-On Colon Cancer HCT116 Cell Lines[J]. Molecules, 2021, 26(8): 2264.
MEMARIANI H,MEMARIANI M,SHAHIDI-DADRAS M,et al. Melittin: from honeybees to superbugs[J]. Appl Microbiol Biotechnol,2019, 103(8): 3265-3276.
ANDERSON D, TERWILLIGER T C, WICKNER W, et al. Melittin forms crystals which are suitable for high resolution X-ray structural analysis and which reveal a molecular 2-fold axis of symmetry[J]. J Biol Chem,1980, 255(6): 2578-2582.
RADY I, SIDDIQUI I A,RADY M, et al. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy[J]. Cancer Lett, 2017, 402: 16-31.
TERWILLIGER T C, EISENBERG D. The structure of melittin. II. Interpretation of the structure[J]. J Biol Chem,1982, 257(11): 6016-6022.
LIU M,WANG H,LIU L,et al. Melittin-MIL-2 fusion protein as a candidate for cancer immunotherapy[J]. J Transl Med,2016, 14(1): 155.
RAGHURAMAN H, CHATTOPADHYAY A. Melittin: a membrane-active peptide with diverse functions[J]. Biosci Rep,2007, 27(4-5): 189-223.
PICOLI T,PETER C M, ZANI J L, et al. Melittin and its potential in the destruction and inhibition of the biofilm formation by Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa isolated from bovine milk[J]. Microb Pathog, 2017, 112: 57-62.
HE S D,TAN N,SUN C X,et al. Treatment with Melittin Induces Apoptosis and Autophagy of Fibroblastlike Synoviocytes in Patients with Rheumatoid Arthritis[J]. Curr Pharm Biotechnol,2020, 21(8): 734-740.
SARASWAT J,ALDAHMASH B,ALOMAR S Y,et al. Synergistic antimicrobial activity of N-methyl substituted pyrrolidinium-based ionic liquids and melittin against Gram-positive and Gram-negative bacteria[J]. Appl Microbiol Biotechnol, 2020, 104(24): 10465-10479.
AKBARI R, HAKEMI-VALA M,PASHAIE F,et al. Highly Synergistic Effects of Melittin with Conventional Antibiotics Against Multidrug-Resistant Isolates of Acinetobacter baumannii and Pseudomonas aeruginosa[J]. Microb Drug Resist, 2019, 25(2): 193-202.
MARQUES PEREIRA A F, ALBANO M, BéRGAMO ALVES F C, et al. Influence of apitoxin and melittin from Apis mellifera bee on Staphylococcus aureus strains[J]. Microb Pathog, 2020, 141: 104011.
GOPAL R, LEE J H, KIM Y G, et al. Anti-microbial, anti-biofilm activities and cell selectivity of the NRC-16 peptide derived from witch flounder, Glyptocephalus cynoglossus[J]. Mar Drugs,2013, 11(6): 1836-1852.
HOWARD C R, FLETCHER N F. Emerging virus diseases: can we ever expect the unexpected?[J]. Emerg Microbes Infect,2012, 1(12): e46.
MEMARIANI H, SHAHBAZZADEH D,RANJBAR R,et al. Design and characterization of short hybrid antimicrobial peptides from pEM-2, mastoparan-VT1, and mastoparan-B[J]. Chem Biol Drug Des, 2017, 89(3): 327-338.
MEMARIANI H, MEMARIANI M, MORAVVEJ H, et al. Melittin: a venom-derived peptide with promising anti-viral properties[J]. Eur J Clin Microbiol Infect Dis, 2020, 39(1): 5-17.
ALBIOL MATANIC V C, CASTILLA V. Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus[J]. Int J Antimicrob Agents, 2004, 23(4): 382-389.
ENAYATHULLAH M G,PAREKH Y,BANU S,et al. Gramicidin S and melittin: potential anti-viral therapeutic peptides to treat SARS-CoV-2 infection[J]. Sci Rep, 2022, 12(1): 3446.
AL-RABIA M W, ALHAKAMY N A, AHMED O A A,et al. Repurposing of Sitagliptin- Melittin Optimized Nanoformula against SARS-CoV-2: Antiviral Screening and Molecular Docking Studies[J]. Pharmaceutics, 2021, 13(3): 307.
KWON Y B, LEE J D, LEE H J,et al. Bee venom injection into an acupuncture point reduces arthritis associated edema and nociceptive responses[J]. Pain, 2001, 90(3): 271-280.
SAINI S S, PETERSON J W, CHOPRA A K. Melittin binds to secretory phospholipase A2 and inhibits its enzymatic activity[J]. Biochem Biophys Res Commun, 1997, 238(2): 436-442.
PARK H J, SON D J, LEE C W, et al. Melittin inhibits inflammatory target gene expression and mediator generation via interaction with IκB kinase[J]. Biochem Pharmacol, 2007, 73(2): 237-247.
LEE W R,KIM K H,AN H J,et al. The Protective Effects of Melittin on Propionibacterium acnes-Induced Inflammatory Responses [J]. Journal of Investigative Dermatology, 2014, 134(7): 1922-1930.
SON D J,KANG J,KIM T J,et al. Melittin, a major bioactive component of bee venom toxin, inhibits PDGF receptor beta-tyrosine phosphorylation and downstream intracellular signal transduction in rat aortic vascular smooth muscle cells[J]. J Toxicol Environ Health A, 2007, 70(15-16): 1350-1355.
PARK H J,LEE S H,SON D J,et al. Antiarthritic effect of bee venom: inhibition of inflammation mediator generation by suppression of NF-κB through interaction with the p50 subunit[J]. Arthritis Rheum,2004, 50(11): 3504-3515.
LEE G, BAE H. Anti-Inflammatory Applications of Melittin, a Major Component of Bee Venom: Detailed Mechanism of Action and Adverse Effects[J]. Molecules, 2016, 21(5): 616.
GU H, AN H J, GWON M G,et al. Bee Venom and Its Major Component Melittin Attenuated Cutibacterium acnes- and IGF-1-Induced Acne Vulgaris via Inactivation of Akt/mTOR/SREBP Signaling Pathway[J]. Int J Mol Sci, 2022, 23(6): 3122.
ZHOU J, WAN C,CHENG J, et al. Delivery Strategies for Melittin-Based Cancer Therapy[J]. ACS Appl Mater Interfaces,2021, 13(15): 17158-17173.
ORŠOLIĆ N. Bee venom in cancer therapy[J]. Cancer Metastasis Rev, 2012, 31(1-2): 173-194.
BEI C,BINDU T, REMANT K C, et al. Dual secured nano-melittin for the safe and effective eradication of cancer cells[J]. J Mater Chem B, 2015, 3(1): 25-29.
YU X,DAI Y,ZHAO Y,et al. Melittin-lipid nanoparticles target to lymph nodes and elicit a systemic anti-tumor immune response[J]. Nat Commun, 2020, 11(1): 1110.
YU X, CHEN L, LIU J,et al. Immune modulation of liver sinusoidal endothelial cells by melittin nanoparticles suppresses liver metastasis[J]. Nat Commun, 2019, 10(1): 574.
JIN H,WAN C,ZOU Z,et al. Tumor Ablation and Therapeutic Immunity Induction by an Injectable Peptide Hydrogel[J]. ACS Nano,2018, 12(4): 3295-3310.
XU T, CUI T, PENG L, et al. The anti-hepatocellular carcinoma activity of Mel-P15 is mediated by natural killer cells[J]. Oncol Lett, 2017, 14(6): 6901-6906.
DAI X,MENG J,DENG S,et al. Targeting CAMKII to reprogram tumor-associated macrophages and inhibit tumor cells for cancer immunotherapy with an injectable hybrid peptide hydrogel[J]. Theranostics,2020, 10(7): 3049-3063.
HENDERSON N C, RIEDER F, WYNN T A. Fibrosis: from mechanisms to medicines[J]. Nature, 2020, 587(7835): 555-566.
ZHAO X, KWAN J Y Y, YIP K, et al. Targeting metabolic dysregulation for fibrosis therapy[J]. Nat Rev Drug Discov, 2020, 19(1): 57-75.
GU H, HAN S M, PARK K K. Therapeutic Effects of Apamin as a Bee Venom Component for Non-Neoplastic Disease[J]. Toxins (Basel), 2020, 12(3): 195.
PARK J H, PARK B, PARK K K. Suppression of Hepatic Epithelial-to-Mesenchymal Transition by Melittin via Blocking of TGFβ/Smad and MAPK-JNK Signaling Pathways[J]. Toxins (Basel), 2017, 9(4): 138.
LEE J, BYUN J, SHIM G,et al. Fibroblast activation protein activated antifibrotic peptide delivery attenuates fibrosis in mouse models of liver fibrosis[J]. Nat Commun, 2022, 13(1): 1516.
AN H J, KIM J Y,KIM W H, et al. The Protective Effect of Melittin on Renal Fibrosis in an Animal Model of Unilateral Ureteral Obstruction[J]. Molecules, 2016, 21(9): 1137.
LI L, ZHANG S F, WEI L, et al. Anti-fibrotic effect of melittin on TRIM47 expression in human embryonic lung fibroblast through regulating TRIM47 pathway[J]. Life Sci, 2020, 256: 117893.
ASTHANA N,YADAV S P, GHOSH J K. Dissection of antibacterial and toxic activity of melittin: a leucine zipper motif plays a crucial role in determining its hemolytic activity but not antibacterial activity[J]. J Biol Chem, 2004, 279(53): 55042-55050.
GUHA S, FERRIE R P,GHIMIRE J,et al. Applications and evolution of melittin, the quintessential membrane active peptide[J]. Biochem Pharmacol, 2021, 193: 114769.
KRAUSON A J,HE J, WIMLEY W C. Gain-of-function analogues of the pore-forming peptide melittin selected by orthogonal high-throughput screening[J]. J Am Chem Soc, 2012, 134(30): 12732-12741.
RATHINAKUMAR R, WIMLEY W C. High-throughput discovery of broad-spectrum peptide antibiotics[J]. Faseb j,2010, 24(9): 3232-3238.
KAUFFMAN W B,GUHA S, WIMLEY W C. Synthetic molecular evolution of hybrid cell penetrating peptides[J]. Nat Commun,2018, 9(1): 2568.
STARR C G,GHIMIRE J,GUHA S,et al. Synthetic molecular evolution of host cell-compatible, antimicrobial peptides effective against drug-resistant, biofilm-forming bacteria[J]. Proc Natl Acad Sci U S A, 2020, 117(15): 8437-8448.
HOUGHTEN R A, PINILLA C, BLONDELLE S E, et al. Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery[J]. Nature,1991, 354(6348):84-86.
WIEDMAN G,KIM S Y,ZAPATA-MERCADO E,et al. pH-Triggered, Macromolecule-Sized Poration of Lipid Bilayers by Synthetically Evolved Peptides[J]. J Am Chem Soc, 2017, 139(2): 937-945.
WIEDMAN G,FUSELIER T, HE J, et al. Highly efficient macromolecule-sized poration of lipid bilayers by a synthetically evolved peptide[J]. J Am Chem Soc, 2014, 136(12): 4724-4731.
WIEDMAN G,WIMLEY W C, HRISTOVA K. Testing the limits of rational design by engineering pH sensitivity into membrane-active peptides[J]. Biochim Biophys Acta, 2015, 1848(4): 951-957.
LUO L, WU W, SUN D, et al. Acid-Activated Melittin for Targeted and Safe Antitumor Therapy[J]. Bioconjug Chem, 2018, 29(9): 2936-2944.
ZHUKOUSKAYA H,BLANCO P M, ČERNOCHOVÁ Z, et al. Anionically Functionalized Glycogen Encapsulates Melittin by Multivalent Interaction[J]. Biomacromolecules, 2022, 23(8): 3371-3382.
ZHAO X, YU Z, DAI W,et al. Construction and characterization of an anti-asialoglycoprotein receptor single-chain variable-fragment-targeted melittin[J]. Biotechnol Appl Biochem, 2011, 58(6): 405-411.
KE M, DONG J, WANG Y, et al. MEL-pep, an analog of melittin, disrupts cell membranes and reverses 5-fluorouracil resistance in human hepatocellular carcinoma cells[J]. Int J Biochem Cell Biol, 2018, 101: 39-48.
YANG M, LI J, GU P, et al. The application of nanoparticles in cancer immunotherapy: Targeting tumor microenvironment[J]. Bioact Mater, 2021, 6(7): 1973-1987.
SHIN S Y, LEE M K, KIM K L,et al. Structure-antitumor and hemolytic activity relationships of synthetic peptides derived from cecropin A-magainin 2 and cecropin A-melittin hybrid peptides[J]. J Pept Res, 1997, 50(4): 279-285.
HUANG C, JIN H, QIAN Y, et al. Hybrid melittin cytolytic Peptide-driven ultrasmall lipid nanoparticles block melanoma growth in vivo[J]. ACS Nano, 2013, 7(7): 5791-5800.
LU X, LIU J, GOU L,et al. Designing Melittin-Graphene Hybrid Complexes for Enhanced Antibacterial Activity[J]. Adv Healthc Mater, 2019, 8(9): e1801521.
CLAPP A R,MEDINTZ I L,MAURO J M,et al. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors[J]. J Am Chem Soc, 2004, 126(1): 301-310.
LI X, VINOTHINI K, RAMESH T, et al. Combined photodynamic-chemotherapy investigation of cancer cells using carbon quantum dot-based drug carrier system[J]. Drug Deliv, 2020, 27(1): 791-804.
DANG Y Q, LI H W, WU Y. Construction of a supramolecular Förster resonance energy transfer system and its application based on the interaction between Cy3-labeled melittin and phosphocholine encapsulated quantum dots[J]. ACS Appl Mater Interfaces, 2012, 4(3): 1267-1272.
CHOI Y J, KIM Y J, LEE J W, et al. Cyto-/genotoxic effect of CdSe/ZnS quantum dots in human lung adenocarcinoma cells for potential photodynamic UV therapy applications[J]. J Nanosci Nanotechnol, 2012, 12(3): 2160-2168.
CAI X, LUO Y, ZHANG W, et al. pH-Sensitive ZnO Quantum Dots-Doxorubicin Nanoparticles for Lung Cancer Targeted Drug Delivery[J]. ACS Appl Mater Interfaces, 2016, 8(34): 22442-22450.
HE S J,CAO J,LI Y S,et al. CdSe/ZnS quantum dots induce photodynamic effects and cytotoxicity in pancreatic cancer cells[J]. World J Gastroenterol,2016, 22(21): 5012-5022.
MALEKI H, RAI A, PINTO S, et al. High Antimicrobial Activity and Low Human Cell Cytotoxicity of Core-Shell Magnetic Nanoparticles Functionalized with an Antimicrobial Peptide[J]. ACS Appl Mater Interfaces, 2016, 8(18): 11366-11378.
VU H D, HUYNH P T, RYU J, et al. Melittin-loaded Iron Oxide Nanoparticles Prevent Intracranial Arterial Dolichoectasia Development through Inhibition of Macrophage-mediated Inflammation[J]. Int J Biol Sci, 2021, 17(14): 3818-3836.
RAI A,PINTO S, EVANGELISTA M B, et al. High-density antimicrobial peptide coating with broad activity and low cytotoxicity against human cells[J]. Acta Biomater, 2016, 33:64-77.
BRAND I, KHAIRALLA B. Structural changes in the model of the outer cell membrane of Gram-negative bacteria interacting with melittin: an in situ spectroelectrochemical study[J]. Faraday Discuss, 2021, 232: 68-85.
CHUGH H,SOOD D, CHANDRA I, et al. Role of gold and silver nanoparticles in cancer nano-medicine[J]. Artif Cells Nanomed Biotechnol, 2018, 46(sup1): 1210-1220.
HEMATYAR M, SOLEIMANI M, ES-HAGHI A, et al. Synergistic co-delivery of doxorubicin and melittin using functionalized magnetic nanoparticles for cancer treatment: loading and in vitro release study by LC-MS/MS[J]. Artif Cells Nanomed Biotechnol, 2018, 46(sup3): s1226-s1235.
SOMAN N R, LANZA G M, HEUSER J M, et al. Synthesis and characterization of stable fluorocarbon nanostructures as drug delivery vehicles for cytolytic peptides[J]. Nano Lett, 2008, 8(4): 1131-1136.
JALLOUK A P, MOLEY K H,OMURTAG K, et al. Nanoparticle incorporation of melittin reduces sperm and vaginal epithelium cytotoxicity[J]. PLoS One, 2014, 9(4): e95411.
SOMAN N R, BALDWIN S L,HU G, et al. Molecularly targeted nanocarriers deliver the cytolytic peptide melittin specifically to tumor cells in mice, reducing tumor growth[J]. J Clin Invest,2009, 119(9): 2830-2842.
CABRAL H, MATSUMOTO Y, MIZUNO K, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size[J]. Nat Nanotechnol, 2011, 6(12): 815-823.
JEONG I, KIM B S, LEE H, et al. Prolonged analgesic effect of PLGA-encapsulated bee venom on formalin-induced pain in rats[J]. Int J Pharm, 2009, 380(1-2): 62-66.
GONZALEZ-HORTA A,MATAMOROS-ACOSTA A,CHAVEZ-MONTES A,et al. Biodegradable nanoparticles loaded with tetrameric melittin: preparation and membrane disruption evaluation[J]. Gen Physiol Biophys, 2017, 36(4): 373-381.
PARK M H, KIM J H, JEON J W, et al. Preformulation Studies of Bee Venom for the Preparation of Bee Venom-Loaded PLGA Particles[J]. Molecules, 2015, 20(8): 15072-15083.
YANG L, CUI F,SHI K,et al. Design of high payload PLGA nanoparticles containing melittin/sodium dodecyl sulfate complex by the hydrophobic ion-pairing technique[J]. Drug Dev Ind Pharm, 2009, 35(8): 959-968.
CUI F, CUN D, TAO A,et al. Preparation and characterization of melittin-loaded poly (DL-lactic acid) or poly (DL-lactic-co-glycolic acid) microspheres made by the double emulsion method[J]. J Control Release, 2005, 107(2): 310-319.
ZHAN W, WEI T, YU Q, et al. Fabrication of Supramolecular Bioactive Surfaces via β-Cyclodextrin-Based Host-Guest Interactions[J]. ACS Appl Mater Interfaces, 2018, 10(43): 36585-36601.
XU Y,DENG M, ZHANG H, et al. Selection of Affinity Reagents to Neutralize the Hemolytic Toxicity of Melittin Based on a Self-Assembled Nanoparticle Library[J]. ACS Appl Mater Interfaces,2020, 12(14): 16040-16049.
LUNDQUIST A, WESSMAN P, RENNIE A R, et al. Melittin-lipid interaction: a comparative study using liposomes, micelles and bilayer disks[J]. Biochim Biophys Acta, 2008, 1778(10): 2210-2216.
ZETTERBERG M M, REIJMAR K, PRäNTING M, et al. PEG-stabilized lipid disks as carriers for amphiphilic antimicrobial peptides[J]. J Control Release, 2011, 156(3): 323-328.
GAO J, XIE C, ZHANG M, et al. RGD-modified lipid disks as drug carriers for tumor targeted drug delivery[J]. Nanoscale, 2016, 8(13): 7209-7216.
AHLGREN S, REIJMAR K, EDWARDS K. Targeting lipodisks enable selective delivery of anticancer peptides to tumor cells[J]. Nanomedicine, 2017, 13(7): 2325-2328.
WANG H,WANG S,WANG R,et al. Co-delivery of paclitaxel and melittin by glycopeptide-modified lipodisks for synergistic anti-glioma therapy[J]. Nanoscale, 2019, 11(27): 13069-13077.
ZHANG Z,CAO W,JIN H,et al. Biomimetic nanocarrier for direct cytosolic drug delivery[J]. Angew Chem Int Ed Engl,2009, 48(48): 9171-9175.
WESSMAN P,STRöMSTEDT A A,MALMSTEN M,et al. Melittin-lipid bilayer interactions and the role of cholesterol[J]. Biophys J, 2008, 95(9): 4324-4336.
WESSMAN P, MORIN M, REIJMAR K, et al. Effect of α‑helical peptides on liposome structure: a comparative study of melittin and alamethicin[J]. J Colloid Interface Sci, 2010, 346(1): 127-135.
AKBARZADEH A, REZAEI-SADABADY R, DAVARAN S,et al. Liposome: classification, preparation, and applications[J]. Nanoscale Res Lett, 2013, 8(1): 102.
BOZZUTO G, MOLINARI A. Liposomes as nanomedical devices[J]. Int J Nanomedicine, 2015, 10: 975-999.
FALCO A, BARRAJóN-CATALáN E, MENéNDEZ-GUTIéRREZ M P, et al. Melittin-loaded immunoliposomes against viral surface proteins, a new approach to antiviral therapy[J]. Antiviral Res, 2013, 97(2): 218-221.
MAO J, LIU S,AI M,et al. A novel melittin nano-liposome exerted excellent anti-hepatocellular carcinoma efficacy with better biological safety[J]. J Hematol Oncol, 2017, 10(1): 71.
TIAN J L,KE X,CHEN Z,et al. Melittin liposomes surface modified with poloxamer 188: in vitro characterization and in vivo evaluation[J]. Pharmazie, 2011, 66(5): 362-367.
LI Y, RUAN S, WANG Z, et al Hyaluronic Acid Coating Reduces the Leakage of Melittin Encapsulated in Liposomes and Increases Targeted Delivery to Melanoma Cells[J]. Pharmaceutics, 2021, 13(8): 1235.
ESIM O, HASCICEK C. Lipid-Coated Nanosized Drug Delivery Systems for an Effective Cancer Therapy[J]. Curr Drug Deliv,2021, 18(2): 147-161.
YE R, ZHENG Y, CHEN Y, et al. Stable Loading and Delivery of Melittin with Lipid-Coated Polymeric Nanoparticles for Effective Tumor Therapy with Negligible Systemic Toxicity[J]. ACS Appl Mater Interfaces,2021, 13(47): 55902-55912.
JIA H R,ZHU Y X,LIU X,et al. Construction of Dually Responsive Nanotransformers with Nanosphere-Nanofiber-Nanosphere Transition for Overcoming the Size Paradox of Anticancer Nanodrugs[J]. ACS Nano,2019, 13(10): 11781-11792.
LIU H, HU Y, SUN Y, et al. Co-delivery of Bee Venom Melittin and a Photosensitizer with an Organic-Inorganic Hybrid Nanocarrier for Photodynamic Therapy and Immunotherapy[J]. ACS Nano, 2019, 13(11): 12638-12652.
CHENG B, XU P. Redox-Sensitive Nanocomplex for Targeted Delivery of Melittin[J]. Toxins (Basel), 2020, 12(9): 582.
LAI H, CHEN F, LU M, et al. Polypeptide-Grafted Nanodiamonds for Controlled Release of Melittin to Treat Breast Cancer[J]. ACS Macro Letters,2017, 6(8): 796-801.
0
Views
0
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution