1.上海中医药大学交叉科学研究院(上海 201203)
2.上海中医药大学附属市中医医院(上海 200071)
3.上海中医药大学附属曙光医院(上海 201203)
扫 描 看 全 文
叶桐,张璐,葛广波等.基于网络药理学和实验药理学探究补骨脂治疗肺腺癌的分子机制[J].上海中医药大学学报,2023,37(04):36-46.
YE Tong,ZHANG Lu,GE Guangbo,et al.Exploration on molecular mechanism of Fructus Psoraleae in treating lung adenocarcinoma based on network pharmacology and experimental pharmacology[J].Academic Journal of Shanghai University of Traditional Chinese Medicine,2023,37(04):36-46.
叶桐,张璐,葛广波等.基于网络药理学和实验药理学探究补骨脂治疗肺腺癌的分子机制[J].上海中医药大学学报,2023,37(04):36-46. DOI: 10.16306/j.1008-861x.2023.04.005.
YE Tong,ZHANG Lu,GE Guangbo,et al.Exploration on molecular mechanism of Fructus Psoraleae in treating lung adenocarcinoma based on network pharmacology and experimental pharmacology[J].Academic Journal of Shanghai University of Traditional Chinese Medicine,2023,37(04):36-46. DOI: 10.16306/j.1008-861x.2023.04.005.
目的,2,运用网络药理学、分子对接、 实验验证等手段探讨补骨脂抗肺腺癌的作用和机制。,方法,2,在症状映射数据库(SymMap)、中药系统药理学数据库与分析平台(TCMSP)、中药分子机制的生物信息学分析工具(BATMAN-TCM)、中草药数据库(TCMID)和基因表达谱互动分析平台(GEPIA)中检索补骨脂活性成分、对应靶点及肺腺癌有关的潜在靶点;利用韦恩图获取补骨脂活性成分作用于肺腺癌的靶点,Cystoscape 3.7.2软件构建补骨脂活性成分作用于肺腺癌靶点网络图。采用STRING数据库进行蛋白质-蛋白质相互作用分析;采用注释、可视化和综合发现数据库(DAVID)进行富集分析,Origin 2021软件构建补骨脂“活性成分-靶点-通路”网络关系图。采用AutoDockTools 1.5.6和 PyMOL进行分子对接。,结果,2,①筛选获得补骨脂治疗肺腺癌的交集靶点55个,涉及β,1,-肾上腺素能受体(ADRB1)、β,2,-肾上腺素能受体(ADRB2)等核心靶点,以及环磷酸鸟苷酸(cGMP)-蛋白激酶G(PKG)和细胞缺氧诱导因子-1(HIF-1)等信号通路。②分子对接结果提示,补骨脂酚与肺腺癌核心治疗靶点ADRB1、ADRB2均有较低的结合能。③实验验证结果证实,补骨脂酚能够抑制肿瘤细胞增殖及肾上腺素能受体亚型,ADRB1,、,ADRB2、,α,1A,-肾上腺素受体(,ADRA1A,)等基因的表达水平,与网络药理学分析结果相符。,结论,2,补骨脂及其活性成分补骨脂酚可通过干预β-肾上腺素能受体及其信号通路,从而发挥抗肺腺癌的作用。
Objective: To investigate effect and mechanism of Fructus Psoraleae,on lung adenocarcinoma using network pharmacology, molecular docking and experimental validation.,Methods,2,Active ingredients of Fructus Psoraleae,and the potential targets related to lung adenocarcinoma (LUAD) were searched in Symptom Mapping (SymMap), Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine (BATMAN-TCM), Traditional Chinese Medicine Integrated Database (TCMID) and Gene Expression Profiling Interactive Analysis (GEPIA); Venn diagram was used to obtain the targets of the active ingredient of Fructus Psoraleae acting on LUAD, Cystoscape 3.7.2 software was used to construct the network diagram of active ingredient from Fructus Psoraleae on LUAD targots. STRING database was used for protein-protein interaction analysis; Database for Annotation, Visualization and Integrated Discovery (DAVID) was used for enrichment analysis, and Origin 2021 software was used for constructing “active ingredient-target-pathway” network diagram. AutoDockTools 1.5.6 and PyMOL was used for molecular Docking.,Results,2,①Fifty-five intersection targets of Fructus Psoraleae for lung adenocarcinoma,treatment were obtained, involving core targets such as β,1,-adrenoceptor (ADRB1) and β,2,-adrenoceptor (ADRB2), as well as signaling pathways such as cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) and hypoxia inducible factor-1 (HIF-1). ②The molecular docking results suggested that bakuchiol,had low binding energy with ADRB1 and ADRB2, which were core therapeutic targets of lung adenocarcinoma. ③The experimental validation results confirmed that bakuchiol could inhibit tumor cell proliferation and expression levels of genes such as adrenergic receptor subtypes ADRB1, ADRB2 and α,1A,-adrenoreceptor (ADRA1A), which were consistent with results of the network pharmacology analysis.,Conclusion,2,Fructus Psoraleae and its active ingredient bakuchiol may exert anti-lung adenocarcinoma effects by intervening with β-adrenergic receptors and their signaling pathways.
补骨脂肺腺癌网络药理学分子对接β-肾上腺素能受体
Fructus Psoraleaelung adenocarcinomanetwork pharmacologymolecular dockingβ-adrenergic receptors
HERBST R S, MORGENSZTERN D, BOSHOFF C. The biology and management of non-small cell lung cancer[J]. Nature, 2018, 553(7689): 446-454.
STEIN M K,PANDEY M,XIU J,et al. Tumor Mutational Burden Is Site Specific in Non-Small-Cell Lung Cancer and Is Highest in Lung Adenocarcinoma Brain Metastases[J]. JCO Precis Oncol,2019, 3: 1-13.
SUN S,SCHILLER J H,GAZDAR A F. Lung cancer in never smokers—a different disease[J]. Nat Rev Cancer, 2007, 7(10): 778-790.
TORRE L A, SIEGEL R L, JEMAL A. Lung Cancer Statistics[J]. Adv Exp Med Biol, 2016, 893: 1-19.
王娟,韩旭,姜淼,等. 口服中成药治疗肺癌临床研究证据的概况性综述[J]. 中国实验方剂学杂志,2022, 28(8): 204-213.
WANG J,HAN X,JIANG M,et al. Oral Chinese Patent Mediciens for Lung Cancer: A Scoping Review of Clinical Evidence[J]. Chinese Journal of Experimental Traditional Medical Formulae,2022, 28(8): 204-213.
鲁亚奇,张晓,王金金,等. 补骨脂化学成分及药理作用研究进展[J]. 中国实验方剂学杂志,2019, 25(3): 180-189.
LU Y Q,ZHANG X,WANG J J,et al. Research Progress on Chemical Constituents and Pharmacological Actions of Psoralea Fructus[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2019, 25(3): 180-189.
WANG F,LI J,LI R,et al. Angelicin inhibits liver cancer growth in vitro and in vivo[J]. Mol Med Rep, 2017, 16(4): 5441-5449.
LI G,HE Y,YAO J,et al. Angelicin inhibits human lung carcinoma A549 cell growth and migration through regulating JNK and ERK pathways[J]. Oncol Rep, 2016, 36(6): 3504-3512.
KIM J,KIM J H,LEE Y,et al. Bakuchiol suppresses proliferation of skin cancer cells by directly targeting Hck, Blk, and p38 MAP kinase[J]. Oncotarget, 2016, 7(12): 14616.
CHEN Z,JIN K,GAO L,et al. Anti-tumor effects of bakuchiol, an analogue of resveratrol, on human lung adenocarcinoma A549 cell line[J]. Eur J Pharmacol, 2010, 643(2-3): 170-179.
HE D,HUANG J H,ZHANG Z Y,et al. A Network Pharmacology-Based Strategy For Predicting Active Ingredients And Potential Targets Of LiuWei DiHuang Pill In Treating Type 2 Diabetes Mellitus[J]. Drug Des Devel Ther, 2019, 13: 3989-4005.
LI Y,YANG Q,YU Y. A Network Pharmacological Approach to Investigate the Mechanism of Action of Active Ingredients of Epimedii Herba and Their Potential Targets in Treatment of Alzheimer's Disease[J]. Med Sci Monit, 2020, 26: e926295.
CHEN S,JIANG H,CAO Y,et al. Drug target identification using network analysis: Taking active components in Sini decoction as an example[J]. Sci Rep, 2016, 6: 24245.
牛明,张斯琴,张博,等. 《网络药理学评价方法指南》解读[J]. 中草药,2021, 52(14): 4119-4129.
NIU M, ZHANG S Q, ZHANG B, et al. Interpretation of Network Pharmacology Evaluation Method Guidance[J]. Chinese Traditional and Herbal Drugs, 2021, 52(14): 4119-4129.
何毅豪,王冰,杨骏,等. 基于网络药理学和体外细胞实验探讨芍药甘草汤治疗溃疡性结肠炎的作用机制[J]. 上海中医药大学学报,2022, 36(6): 59-69.
HE Y H,WANG B,YANG J,et al. Exploration on mechanism of Shaoyao Gancao Decoction in treating ulcerative colitis based on network pharmacology and in vitro cell experiments[J]. Journal of Shanghai University of Traditional Chinese Medicine, 2022, 36(6): 59-69.
杨雯静,黄健,王维,等. 基于网络药理学和体外细胞实验探究“三七-骨碎补”药对活性成分治疗骨质疏松症的作用机制[J]. 中国中药杂志,2023, 48(4): 1087-1097.
YANG W J, HUANG J, WANG W, et al. Mechanism of active components of “Notoginseng Radix et Rhizoma-Drynariae Rhizoma” in treatment of osteoporosis based on network pharmacology and in vitro cell experiment[J].China Journal of Chinese Materia Medica, 2023, 48(4): 1087-1097.
WU Y,ZHANG F,YANG K,et al. SymMap: an integrative database of traditional Chinese medicine enhanced by symptom mapping[J]. Nucleic Acids Res, 2019, 47(D1): D1110-D1117.
XU X,ZHANG W,HUANG C,et al. A novel chemometric method for the prediction of human oral bioavailability[J]. Int J Mol Sci,2012, 13(6): 6964-6982.
LIU H,WANG J,ZHOU W,et al. Systems approaches and polypharmacology for drug discovery from herbal medicines: an example using licorice[J]. J Ethnopharmacol, 2013, 146(3): 773-793.
RU J,LI P,WANG J,et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines[J]. J Cheminform, 2014, 6: 13.
LIU Z,GUO F,WANG Y, et al. BATMAN-TCM: a Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine[J]. Sci Rep, 2016, 6: 21146.
XUE R,FANG Z, ZHANG M, et al. TCMID: Traditional Chinese Medicine integrative database for herb molecular mechanism analysis[J]. Nucleic Acids Res, 2013, 41(Database issue): D1089-D1095.
MAGRANE M. UniProt Knowledgebase: a hub of integrated protein data[J]. Database (Oxford), 2011, 2011: bar 009.
TANG Z,LI C,KANG B,et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses[J]. Nucleic Acids Res, 2017, 45(W1): W98-W102.
BARDOU P,MARIETTE J, ESCUDIE F,et al. jvenn: an interactive Venn diagram viewer[J]. BMC Bioinformatics, 2014,15(1):293.
SHANNON P,MARKIEL A,OZIER O,et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks[J]. Genome Res, 2003, 13(11): 2498-2504.
SZKLARCZYK D,GABLE A L,NASTOU K C,et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets[J]. Nucleic Acids Res, 2021, 49(D1): D605-D612.
JIAO X,SHERMAN B T,HUANG D W,et al. DAVID-WS: a stateful web service to facilitate gene/protein list analysis[J]. Bioinformatics, 2012, 28(13): 1805-1806.
TROTT O,OLSON A J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading[J]. J Comput Chem, 2010, 31(2): 455-461.
汪绮石. 理虚元鉴[M]. 北京:中国医药科技出版社,2020: 5.
WANG Q S. Lixu Yuanjian[M]. Beijing:China Medical Science Press, 2020: 5.
黄帝. 黄帝内经[M].沈阳:万卷出版公司,2011: 3.
HUANG D. Huangdi Neijing[M]. Shenyang:Volumes Publishing Company, 2011: 3.
王留晏,陈露,张克克. 肺癌从脾肾论治体悟[J]. 陕西中医药大学学报,2019, 42(1): 40-43.
WANG L Y, CHEN L, ZHANG K K. Lung Cancer Treatment from Spleen and Kidney[J]. Journal of Shaanxi University of Chinese Medicine, 2019, 42(1): 40-43.
张学农,王燕燕,吴英华,等. 中药补骨脂抗肿瘤活性成分及作用机制的研究进展[J]. 巴楚医学,2019, 2(1): 102-106.
ZHANG X N,WANG Y Y,WU Y H,et al. Progress of Anti-Tumor Components and Mechanism in Fructus Psoraleae[J]. Bachu Medical Journal, 2019, 2(1): 102-106.
DONG Y,CHEN C,CHEN C,et al. Stigmasterol inhibits the progression of lung cancer by regulating retinoic acid-related orphan receptor C[J]. Histol Histopathol, 2021, 36(12): 1285-1299.
LUO Y,GAO X,ZOU L,et al. Bavachin Induces Ferroptosis through the STAT3/P53/SLC7A11 Axis in Osteosarcoma Cells[J]. Oxid Med Cell Longev, 2021, 2021: 1783485.
LI B,XU N,WAN Z,et al. Isobavachalcone exerts antiproliferative and proapoptotic effects on human liver cancer cells by targeting the ERKs/RSK2 signaling pathway[J]. Oncol Rep, 2019, 41(6): 3355-3366.
LI K,ZHENG Q,CHEN X,et al. Isobavachalcone Induces ROS-Mediated Apoptosis via Targeting Thioredoxin Reductase 1 in Human Prostate Cancer PC-3 Cells[J]. Oxid Med Cell Longev,2018, 2018: 1915828.
HAO W,ZHANG X,ZHAO W,et al. Psoralidin induces autophagy through ROS generation which inhibits the proliferation of human lung cancer A549 cells[J]. PeerJ, 2014, 2: e555.
LYU L,LIU B. Anti‑tumor effects of bakuchiol on human gastric carcinoma cell lines are mediated through PI3K/AKT and MAPK signaling pathways[J]. Mol Med Rep, 2017, 16(6): 8977-8982.
SONG H S,JANG S,KANG S C. Bavachalcone from Cullen corylifolium induces apoptosis and autophagy in HepG2 cells[J]. Phytomedicine, 2018, 40: 37-47.
WANG F,LIU H,WANG F,et al. Propranolol suppresses the proliferation and induces the apoptosis of liver cancer cells[J]. Mol Med Rep, 2018, 17(4): 5213-5221.
POWE D G,VOSS M J,ZANKER K S,et al. Beta-blocker drug therapy reduces secondary cancer formation in breast cancer and improves cancer specific survival[J]. Oncotarget, 2010, 1(7):628-638.
0
Views
122
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution