1.上海中医药大学中药研究所,中药标准化教育部重点实验室,上海中药标准化研究中心(上海 201203)
扫 描 看 全 文
卢欣欣,牛腾飞,赵淑娟等.UDP⁃糖基供体在中药苷类成分生物合成中的应用及研究进展[J].上海中医药大学学报,2023,37(02):85-95.
LU Xinxin,NIU Tengfei,ZHAO Shujuan,et al.Application and advances of UDP⁃sugar donors in biosynthesis of glycosides[J].Academic Journal of Shanghai University of Traditional Chinese Medicine,2023,37(02):85-95.
卢欣欣,牛腾飞,赵淑娟等.UDP⁃糖基供体在中药苷类成分生物合成中的应用及研究进展[J].上海中医药大学学报,2023,37(02):85-95. DOI: 10.16306/j.1008-861x.2023.02.013.
LU Xinxin,NIU Tengfei,ZHAO Shujuan,et al.Application and advances of UDP⁃sugar donors in biosynthesis of glycosides[J].Academic Journal of Shanghai University of Traditional Chinese Medicine,2023,37(02):85-95. DOI: 10.16306/j.1008-861x.2023.02.013.
尿苷二磷酸(UDP)-糖基供体是三萜、黄酮和蒽醌等中药活性成分糖基化修饰的重要组成前体。近年来,通过代谢工程策略合成苷类化合物已取得一定进展,但UDP-糖基供体在不同类型的底盘细胞中产量普遍偏低,极大地限制了中药苷类化合物的高效生物合成。作者从UDP-糖基供体的生物合成、循环再生以及代谢合成途径中关键基因调控、代谢模块优化等方面,重点综述了UDP-糖基供体在苷类成分合成中供应的研究进展,并展望了UDP-糖基供体在生物合成中的挑战和发展方向,以期为今后苷类成分的生物合成相关研究提供借鉴。
Uridine diphosphate (UDP)-sugar donors are key precursors for glycosylation modification of active ingredients of traditional Chinese medicine, such as triterpenoids, flavonoids, and anthraquinones. In recent years, some progress has been made in the synthesis of glycosides by metabolic engineering strategies, but the low yield of UDP-sugar donors in various chassis cells limits the efficient biosynthesis of traditional Chinese medicine glycosides. In this review, the research progress in the supply of UDP-sugar donors in the synthesis of glycosides were reviewed from the aspects of biosynthesis, recycling and regeneration of UDP-sugar donors as well as the regulation of key genes in the metabolic synthesis pathway and optimization of metabolic modules. Furthermore, research challenges and development directions of UDP-sugar donors in glycosides biosynthesis were discussed, in order to provide a reference for further research on glycoside biosynthesis.
UDP-糖基供体苷类化合物代谢调控生物合成
UDP-sugar donorsglycosidesmetabolic regulationbiosynthesis
THIBODEAUX C J, MELANCON C E, LIU H W. Natural-product sugar biosynthesis and enzymatic glycodiversification[J]. Angew Chem Int Ed Engl, 2008, 47(51): 9814-9859.
JANG E, INN K S, JANG Y P, et al. Phytotherapeutic activities of sanguisorba officinalis and its chemical constituents: a review[J]. Am J Chin Med, 2018, 46(2): 299-318.
WANG P, WEI Y, FAN Y, et al. Production of bioactive ginsenosides Rh2 and Rg3 by metabolically engineered yeasts[J]. Metab Eng, 2015, 29: 97-105.
LU J, YAO L, LI J X,et al. Characterization of UDP-glycosyltransferase involved in biosynthesis of ginsenosides Rg1 and Rb1 and identification of critical conserved amino acid residues for its function[J]. J Agric Food Chem, 2018, 66(36): 9446-9455.
YAN X, FAN Y, WEI W, et al. Production of bioactive ginsenoside compound K in metabolically engineered yeast[J]. Cell Res, 2014, 24(6): 770-773.
SOHRETOGLU D, HUANG S. Ganoderma lucidum polysacchar-ides as an anti-cancer agent[J]. Anticancer Agents Med Chem, 2018, 18(5): 667-674.
XU J W, ZHAO W, ZHONG J J. Biotechnological production and application of ganoderic acids[J]. Appl Microbiol Biotechnol,2010, 87(2): 457-466.
CHANG T S, WU J Y, WANG T Y, et al. Uridine diphosphate-dependent glycosyltransferases from Bacillus subtilis ATCC 6633 catalyze the 15-O-glycosylation of ganoderic acid A[J]. Int J Mol Sci, 2018, 19(11): 34-69.
CHANG T S, CHIANG C M, KAO Y H, et al. A New triterpenoid glucoside from a novel acidic glycosylation of ganoderic acid a via recombinant glycosyltransferase of Bacillus subtilis[J]. Molecules, 2019, 24(19): 34-57.
WANG Y P, LI X Y,SONG C Q, et al. Effect of astragaloside Ⅳ on T, B lymphocyte proliferation and peritoneal macrophage function in mice[J]. Acta Pharmacol Sinica, 2002, 23(3): 263-266.
LU X C, ZHANG L, FENG X D, et al. Biosynthesis of glycyrrhetinic acid-3-O-monoglucose using glycosyltransferase UGT73C11 from Barbarea vulgaris[J]. Ind Eng Chem Res, 2017, 56(51): 14949-14958.
SHUKLA A, M.RASIK A, N.DHAWAN B. Asiaticoside-induced elevation of antioxidant levels in healing wounds[J]. Pharmacol Res, 1999, 13(1): 50-54.
LI F, XU Q, ZHENG T, et al. Metabonomic analysis of allium macrostemon bunge as a treatment for acute myocardial ischemia in rats[J]. J Pharm Biomed Anal, 2014, 88: 225-234.
LEE M S, YUET J C,KONG S K, et al. Effects of polyphyllin D, a steroidal saponin in paris polyphylla,in growth inhibition of human breast cancer cells and in xenograft[J]. Cancer Biol Ther, 2005, 4(11): 1248-1254.
YANG X,JIANG Y,YANG J,et al. Prenylated flavonoids,promising nutraceuticals with impressive biological activities[J]. Trends Food Sci Tech, 2015, 44(1): 93-104.
HIROMOTO T,HONJO E,NODA N,et al. Structural basis for acceptor-substrate recognition of UDP-glucose: anthocyanidin 3-O-glucosyltransferase from Clitoria ternatea[J]. Protein Sci, 2015, 24(3): 395-407.
XIAO J, MUZASHVILI T S, GEORGIEV M I. Advances in the biotechnological glycosylation of valuable flavonoids[J]. Biotechnol Adv, 2014, 321(6): 1145-1156.
VEITCH N C, GRAYER R J. Flavonoids and their glycosides, including anthocyanins[J]. Nat Prod Rep, 2011, 281(10): 1626-1695.
LIN L, LIU A, LIU J, et al. Protective effects of scutellarin and breviscapine on rain and heart ischemia in rats[J]. J Cardiovasc Pharmacol, 2007, 50(3): 327-332.
GANESHPURKAR A, SALUJA A K. The pharmacological potential of rutin[J]. Saudi Pharm J, 2017, 25(2): 149-164.
COURTS F L, WILLIAMSON G. The occurrence, fate and biological activities of C-glycosyl flavonoids in the human diet[J]. Crit Rev Food Sci Nutr, 2015, 55(10): 1352-1367.
JIA X,IWANOWYCZ S,WANG J, et al. Emodin attenuates systemic and liver inflammation in hyperlipidemic mice administrated with lipopolysaccharides[J]. Exp Biol Med (Maywood), 2014, 239(8): 1025-1035.
DERKSEN C H ,NIEDERLANDER A G ,BEEK T. A nalysis of anthraquinones in Rubia tinctorum L. by liquid chromatography coupled with diode-array UV and mass spectrometric detection[J]. J Chromatogr A, 2002, 978(1-2): 119-127.
DELIBERTO S T, WERNER S J. Review of anthraquinone applications for pest management and agricultural crop protection[J]. Pest Manag Sci, 2016, 72(10): 1813-1825.
ZHANG Y, SHI J, NI Y, et al. Tracing the mass flow from glucose and phenylalanine to pinoresinol and its glycosides in Phomopsis sp. XP-8 using stable isotope assisted TOF-MS[J]. Sci Rep, 2019, 9(1): 18495.
ZHANG L, YU H, SUN Y,et al. Protective effects of salidroside on hydrogen peroxide-induced apoptosis in SH-SY5Y human neuroblastoma cells[J]. Eur J Pharmacol, 2007, 564(1-3): 18-25.
HEMM M R,RIDER S D,OGAS J, et al. Light induces phenylpropanoid metabolism in Arabidopsis roots[J]. Plant J,2004, 38(5): 765-778.
VALERY M. Astonishing diversity of nabural surfactants: 6. Biologically active marine and terrestrial alkaloid glycosides[J]. Liqids, 2005, 40(11): 1081-1104.
吴桐,王建农. 茄科植物糖苷生物碱抗肿瘤活性及其构效关系研究进展[J]. 天然产物研究与开发,2020, 32(12): 2142-2147.
WU T,WANG J N. Research progress on antitumor activity and structure-activity relationship of glycoalkaloids from Solanaceae plants[J]. Natural Product Research and Development, 2020, 32(12): 2142-2147.
WU Y,ZHANG Z X,HU H,et al. Novel indole C-glycosides from isatis indigotica and their potential cytotoxic activity[J]. Fitoterapia, 2011, 82(2): 288-292.
AISAKA K, HATTORI Y, KIHARA T, et al. Hypotensive action of 3a-dihydrocadambine, an indole alkaloid glycoside of uncaria hooks[J]. Planta Medica, 1985, 51(5): 424-427.
裴月湖,娄红祥,张卫东,等. 天然药物化学(第7版)[M]. 北京:人民卫生出版社,2016: 267-268.
PEI Y H, LOU H X, ZHANG W D, et al. Natural Medicinal Chemistry (7th Edition)[M]. Beijing: People’s Medical Publishing House, 2016: 267-268.
ICHIKAWA Y, WANG R, WANG C. Regeneration of sugar nucleotide for enzymatic oligosaccharide synthesis[J]. Meth Enzymol, 1994, 247: 107-127.
NOGUCHI T, SHIBA T. Use of Escherichia coli polyphosphate kinase for oligosaccharide synthesis[J]. Biocsci Biotechnol Biochem, 1998, 62(8): 1594-1596.
MA W, ZHAO L, MA Y D, et al. Oriented efficient biosynthesis of rare ginsenoside Rh2 from PPD by compiling UGT-Yjic mutant with sucrose synthase[J]. Int J Biol Macromol, 2020, 146: 853-859.
THAPA S B, PANDEY R P,BASHYAL P, et al. Cascade biocatalysis systems for bioactive naringenin glucosides and quercetin rhamnoside production from sucrose[J]. Appl Microbiol Biotechnol, 2019, 103(19): 7953-7969.
TANSAKUL P, SHIBUYA M,KUSHIRO T, et al. Dammarenediol-Ⅱ synthase, the first dedicated enzyme for ginsenoside biosynthesis, in Panax ginseng[J]. FEBS Lett, 2006, 580(22): 5143-5149.
徐晓双,张福生,秦雪酶.三萜皂苷生物合成途径及关键酶的研究进展[J].世界科学技术-中医药现代化,2014, 16(11): 2440-2448.
XU X S, ZHANG F S, QIN X M. Research advances on triterpenoid saponins biosynthesis and it’s key enzymes[J]. World Science and Technology/Modernization of Traditional Chinese Medicine and Materia Medica, 2014, 16(11): 2440-2448.
王金鹤,王冬,李畏娴,等.酿酒酵母工程菌UDP-葡萄糖供给模块的优化与人参皂苷F1生产[J].中国中药杂志,2019, 44(9): 4596-4604.
WANG J H,WANG D,LI W X,et al. Optimization of UDP-glucose supply module and production of ginsenoside F1 in Saccharomyces cerevisiae[J]. China Journal of Traditional Chinese Medicine, 2019, 44(9): 4596-4604.
REN S, SUN Q, ZHANG L, et al. Sustainable production of rare Oleanane-type ginsenoside Ro with an artficial glycosylation pathway in Saccharomyces cerevisiae[J]. Green Chem, 2022, 24(21): 8302-8313.
CHU L L, MONTECILLO J A V, BAE H. Recent advances in the metabolic engineering of yeasts for ginsenoside biosynthesis[J]. Front Bioeng Biotechnol, 2020, 8: 139.
GUO H, WANG H, CHEN T, et al. Engineering critical amino residues of lanosterol synthase to improve the production od triterpenoids in Saccharomyces cerevisiae[J]. ACS Synth Biol, 2022, 11(8): 2685-2696.
ZHUANG Y, YANG G Y, CHEN X, et al. Biosynthesis of plant-derived ginsenoside Rh2 in yeast via repurposing a key promiscuous microbial enzyme[J]. Metab Eng, 2017, 42: 25-32.
WANG P,WEI W,YE W,et al. Synthesizing ginsenoside Rh2 in Saccharomyces cerevisiae cell factory at high-efficiency[J]. Cell Discov, 2019, 5: 5.
LU Z,XU X L,TIAN Y N,et al. Single site mutations of glycosyltransferase with improved activity and regioselectivity for directed biosynthesis of unnatural protopanaxatriol-type ginsenoside product[J]. Mol Catal, 2021, 515: 111937.
YANG S M,HAN S H,KIM B G,et al. Production of kaempferol 3-O-rhamnoside from glucose using engineered Escherichia coli[J]. J Ind Microbiol Biotechnol, 2014, 41(8): 1311-1318.
SHRESTHA A, PANDEY R P, DHAKAL D,et al. Biosynthesis of flavone C-glucosides in engineered Escherichia coli[J]. Appl Microbiol Biotechnol, 2018, 102(3): 1251-1267.
PEI J,DONG P,WU T,et al. Metabolic engineering of Escherichia coli for astragalin biosynthesis[J]. J Agric Food Chem, 2016, 64(42): 7966-7972.
GU N, QIU C, ZHAO L, et al. Enhancing UDP-Rhamnose supply for rhamnosylation of flavonoids in Escherichia coli by regulating the modular pathway and improving NADPH availability[J]. J Agric Food Chem, 2020, 68(35): 9513-9523.
LI G, ZHU F, WEI P,et al. Metabolic engineering of Escherichia coli for hyperoside biosynthesis[J]. Mirroorganisms, 2022, 10(3): 628.
WANG Z, LI X, DAI Y Q, et al. Sustainable production of genistin from glycerol by constructing and optimizing Escherichia coli[J]. Meta Eng, 2022, 74: 206-219.
LIM C G,WONG L,BHAN N,et al. Development of a recombinant Escherichia coli strain for overproduction of the plant pigment anthocyanin[J]. Appl Environ Microbiol, 2015, 81(18): 6276-6284.
ZHA J, ZANG Y, MATTOZZI M, et al. Metabolic engineering of Corynebacterium glutamicum for anthocyanin production[J]. Microb Cell Fact, 2018, 17(1): 143.
PADILLA L,MORBACH S, KRAMER R,et al. Impact of heterologous expression of Escherichia coli UDP-glucose pyrophosphorylase on trehalose and glycogen synthesis in Corynebacterium glutamicum[J]. Appl Environ Microbiol, 2004, 70(1): 3845-3854.
PANDEY R P, MALLA S, SIMKHADA D,et al. Production of 3-O-xylosyl quercetin in Escherichia coli[J]. Appl Microbiol Biotechnol, 2013, 97(5): 1889-1901.
KIM S Y, LEE H R,PARK K S, et al. Metabolic engineering of Escherichia coli for the biosynthesis of flavonoid-O-glucuronides and flavonoid-O-galactoside[J]. Appl Microbiol Biotechnol, 2015, 99(5): 2233-2242.
0
Views
130
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution