1.上海中医药大学中药研究所,中药标准化教育部重点实验室(上海 201203)
2.上海中药标准化研究中心(上海 201203)
扫 描 看 全 文
韩沅沅,方洪,谷丽华等.基于网络药理学石菖蒲挥发油干预中枢神经系统疾病共性物质基础和作用机制探讨[J].上海中医药大学学报,2022,36(03):52-60.
HAN Yuanyuan,FANG Hong,GU Lihua,et al.Exploring common material basis and mechanism of volatile oil from Acori Tatarinowii Rhizoma in intervening central nervous system diseases based on network pharmacology[J].Academic Journal of Shanghai University of Traditional Chinese Medicine,2022,36(03):52-60.
韩沅沅,方洪,谷丽华等.基于网络药理学石菖蒲挥发油干预中枢神经系统疾病共性物质基础和作用机制探讨[J].上海中医药大学学报,2022,36(03):52-60. DOI: 10.16306/j.1008-861x.2022.03.009.
HAN Yuanyuan,FANG Hong,GU Lihua,et al.Exploring common material basis and mechanism of volatile oil from Acori Tatarinowii Rhizoma in intervening central nervous system diseases based on network pharmacology[J].Academic Journal of Shanghai University of Traditional Chinese Medicine,2022,36(03):52-60. DOI: 10.16306/j.1008-861x.2022.03.009.
目的,2,探究石菖蒲挥发油成分干预阿尔茨海默病、帕金森病、癫痫和抑郁症4种中枢神经系统疾病的共性物质基础及其作用机制。,方法,2,通过检索TCMSP、PubChem和CNKI数据库收集石菖蒲的挥发油成分,通过SwissADME平台筛选高吸收、可透过血脑屏障且具有类药性的成分;利用SwissTargetPrediction、BATMAN-TCM、GeneCards和OMIM数据库分别预测活性成分和治疗4种疾病的潜在靶点;通过Cytoscape 3.6.0构建“挥发油成分-靶点-疾病”网络;基于STRING数据库和BioGRID数据库构建潜在靶点的蛋白质-蛋白质相互作用(PPI)网络;利用Bioconductor数据库和R 4.1.2软件进行潜在靶点的GO功能注释和KEGG富集分析;最后运用AutoDock Vina软件对关键靶点和关键成分进行分子对接验证。,结果,2,从石菖蒲中共筛选得到33个挥发油活性成分及61个靶点。“成分-靶点-疾病”网络显示α-香附酮、菖蒲螺烯酮、马兜铃酮、异水菖酮、菖蒲螺酮烯、水菖蒲酮、桔利酮和异丁香酚甲醚为干预疾病的关键成分。PPI网络显示AKT1、TP53和mTOR为关键靶点,分子对接结果显示各关键靶点与关键成分的结合能均<-4.7 kcal/mol。KEGG富集结果显示多巴胺能突触通路、帕金森病通路、羟色胺能突触通路、阿尔茨海默病通路为关键通路。,结论,2,从石菖蒲中筛选出8种挥发油有效成分,其可能通过调控靶点AKT1、TP53和mTOR参与多个通路对中枢神经系统疾病发挥治疗作用。
Objective: To explore the common material basis of volatile oil from Acori Tatarinowii Rhizoma and mechanism in intervening Alzheimer’s disease, Parkinson’s disease, epilepsy and depression based on network pharmacology.,Methods,2,The volatile oil components of Acori Tatarinowii Rhizoma,were obtained from TCMSP, PubChem and CNKI databases. And the components with high absorption, blood-brain barrier and drug-like properties were screened by SwissADME platform. The active components and potential targets in the treatment of 4 diseases were predicted through SwissTargetPrediction, BATMAN-TCM, GeneCards and OMIM databases. Thus, the “components-targets-diseases” network was constructed by Cytoscape 3.6.0. The protein-protein interaction (PPI) network of potential targets was constructed based on the STRING and BioGRID databases. The GO function annotation and KEGG enrichment analysis of potential targets were performed by Bioconductor database and R 4.1.2 software. Finally, AutoDock Vina was used to validate the molecular docking of key targets and key components.,Results,2,Totally 33 volatile oil active components from Acori Tatarinowii Rhizoma and 61 corresponding targets were obtained. The “components-targets-diseases” network showed that α-cyperone, acorenone, aristolone, isoshyobunone, acoronene, shyobunone, zierone and methyl isoeugenol were the key components in disease intervention. PPI network showed that AKT1, TP53 and mTOR were the key targets. The molecular docking results showed that the binding energies of key targets and key compounds were less than -4.7 kcal/mol. KEGG enrichment results showed that dopaminergic synapse pathway, Parkinson’s disease pathway, serotonergic synapse pathway, Alzheimer’s disease pathway were the key pathways.,Conclusion,2,Eight volatile oil active components were screened from Acori Tatarinowii Rhizoma, which may exert the therapeutic effects on central nervous system diseases by participating in multiple pathways through regulatory targets AKT1, TP53 and mTOR.
石菖蒲挥发油阿尔茨海默病帕金森病癫痫抑郁症网络药理学
Acori Tatarinowii Rhizomavolatile oilAlzheimer’s diseaseParkinson’s diseaseepilepsydepressionnetwork pharmacology
BAI X,FU R J,ZHANG S,et al. Potential medicinal value of celastrol and its synthesized analogues for central nervous system diseases[J]. Biomed Pharmacother, 2021, 139: 111551.
崔建齐. 阿尔茨海默病[M]. 西安:陕西科学技术出版社,2018: 40-63.
JANKOVIC J. Parkinson’s disease: clinical features and diagnosis[J]. J neurol Nneurosurg Psychiatry, 2008, 79(4): 368-376.
张森,赵晓悦,梁宇,等. 帕金森病致病因素及发病机制研究进展[J]. 药学学报,2020, 55(10): 2264-2272.
VEZZANI A, FRENCH J, BARTFAI T, et al. The role of inflammation in epilepsy[J]. Nat Rev Neurol, 2011, 7(1): 31-40.
FISHER R S, ACEVEDO C,ARZIMANOGLOU A, et al. ILAE official report: a practical clinical definition of epilepsy[J]. Epilepsia, 2014, 55(4): 475-482.
ROBERT S P. 默克诊疗手册[M]. 北京:人民卫生出版社,2014: 2098.
常军,章明星. 抑郁症的发病机制及治疗研究进展[C]//第六届中国中西医结合学会心身医学专业委员会换届大会暨第十二次中国中西医结合心身医学学术交流会论文集. 天津:中国中西医结合学会,2019:112-132.
DANON J J, REEKIE T A, KASSIOU M. Challenges and opportunities in central nervous system drug discovery[J]. Trends Chemistry, 2019, 1(6): 612-624.
邓敏贞,宁百乐,王南卜,等. 石菖蒲挥发油联合人参总皂苷对APP/PS1双转基因小鼠乙酰胆碱转移酶、胶质纤维酸性蛋白和海马组织病理形态学的影响[J]. 中医学报,2019, 34(1): 80-85.
ZHANG S, GUI X H, HUANG L P, et al. Neuroprotective effects of β-asarone against 6-hydroxy dopamine-induced parkinsonism via JNK/Bcl-2/Beclin-1 pathway[J]. Mol Neurobiol, 2016, 53(1): 83-94.
陈俐,廖卫平. 石菖蒲萃取挥发油抗癫痫药效研究[J]. 中药新药与临床药理,2003, 14(3): 171-173.
陈俐,廖卫平. 石菖蒲挥发油对癫痫大鼠海马氨基酸含量的影响[J]. 中国中药杂志,2004, 29(7): 64-67.
王坤芳,杨育同,梁志刚,等. 石菖蒲挥发油抗惊厥作用及对癫痫大鼠海马PKC表达的影响[J]. 中药药理与临床,2015, 31(1): 97-100.
高志影,张春,董海影,等. 石菖蒲有效成分对抑郁模型大鼠海马神经元的保护作用[J]. 中国老年学杂志,2014, 34(4): 1000-1002.
高炎,邵卫,陈国华. 基于数据挖掘探讨中药治疗阿尔兹海默病的用药规律[J]. 湖南中医药大学学报,2020, 40(12): 1515-1520.
赵艳青,滕晶. 基于中医传承辅助平台系统癫痫的组方用药规律分析[J]. 中医药信息,2015, 32(3): 91-93.
石坚宏,姬丽婷,骆启晗,等. 石菖蒲化学成分、药理作用及质量标志物预测分析研究进展[J]. 中成药,2021, 43(5): 1286-1290.
世界中医药学会联合会. 网络药理学评价方法指南[J]. 世界中医药,2021, 16(4): 527-532.
RU J L,LI P,WANG J N,et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines[J]. J Cheminform, 2014, 6: 13.
李思颖,李佳川,宋琴,等. 基于“关键成分-潜在靶点-核心通路”交互网络的酒蒸黄连生物碱-石菖蒲挥发油配伍防治糖尿病认知功能障碍机制研究[J]. 中草药,2021, 52(19): 5910-5921.
KIM S, CHEN J, CHENG T J, et al. PubChem in 2021: new data content and improved web interfaces[J]. Nucleic Acids Res,2019, 47(D1): D1388-D1395.
DAINA A, MICHIELIN O,ZOETE V. SwissADME: a free web tool to evaluate pharmacokinetics,drug-likeness and medicinal chemistry friendliness of small molecules[J]. Sci Rep, 2017, 7: 42717.
DAINA A, MICHIELIN O,ZOETE V. iLOGP: a simple,robust,and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach[J]. J Chem Inf Model,2014, 54(12): 3284-3301.
DAINA A, ZOETE V. A BOILED-Egg to predict gastrointestinal absorption and brain penetration of small molecules[J]. Chem Med Chem, 2016, 11(11): 1117-1121.
石嘉怿,张冉,梁富强,等. 谷物植物化学物中α-葡萄糖苷酶抑制剂的筛选及其分子机制[J]. 食品科学,2021, 42(5): 9-16.
DAINA A, MICHIELIN O, ZOETE V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules[J]. Nucleic Acids Res, 2019, 47(W1): W357-W364.
GFELLER D,MICHIELIN O, ZOETE V. Shaping the interaction landscape of bioactive molecules[J]. Bioinformatics, 2013, 29(23): 3073-3079.
LIU Z Y,GUO F F, WANG Y,et al. BATMAN-TCM: a Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine[J]. Sci Rep, 2016, 6: 21146.
STELZER G, ROSEN N,PLASCHKES I, et al. The GeneCards suite: from gene data mining to disease genome sequence analysis[J]. Curr Protoc Bioinformatics, 2016, 54: 1.30.1-1.30.33. doi:10.1002/cpbi.5http://dx.doi.org/10.1002/cpbi.5.
BERMAN H, HENRICK K, Nakamura H. Announcing the worldwide Protein Data Bank[J]. Nat Struct Biol, 2003, 10(12): 980.
TROTT O, OLSON A J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading[J]. J Comput Chem, 2010, 31(2): 455-461.
陈小露. 石菖蒲挥发油谱效关系的初步研究[D]. 广州:广州中医药大学,2015.
郭美彤,赵佳奇,韩诚,等. 石菖蒲药效物质基础和作用机制研究进展[J]. 中药药理与临床,2019, 35(2): 179-184.
邵福平,田蕾,田妹,等. 中药石菖蒲的研究进展[J]. 中医药导报,2018, 24(22): 65-69.
罗球珠,杨棣华,巫资粦,等. 石菖蒲挥发油成分的气相色谱-质谱分析[J]. 中国药物经济学,2021, 16(8): 116-120.
邰佳,邹俊波,史亚军,等. GC-MS分析水蒸气蒸馏法提取石菖蒲挥发油过程中油水分配规律[J]. 中草药,2020, 51(1): 59-66.
周文霞,王同兴,程肖蕊,等. 网络药理学研究中的网络分析技术[J]. 国际药学研究杂志,2016, 43(3): 399-409.
IOSIF R E,EKDAHL C T,AHLENIUS H,et al. Lindvall O. Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis[J]. J Neurosci, 2006, 26(38): 9703-9712.
王明威,谢西梅,张旭龙,等. 基于PI3K/Akt信号通路探讨针刺在中枢神经系统疾病中的作用机制[J]. 针灸临床杂志,2021, 37(9): 98-101.
NURCAHYANTI A D R, JAP A,LADY J, et al. Function of selected natural antidiabetic compounds with potential against cancer via modulation of the PI3K/AKT/mTOR cascade[J]. Biomed Pharmacother, 2021, 144: 112138.
XIA T, ZHANG J, ZHOU C X, et al. 20(S)-Ginsenoside Rh2 displays efficacy against T-cell acute lymphoblastic leukemia through the PI3K/Akt/mTOR signal pathway[J]. J Ginseng Res, 2020, 44(5): 725-737.
MENG D D, HE W, ZHANG Y, et al. Development of PI3K inhibitors: Advances in clinical trials and new strategies(Review)[J]. Pharmacol Res, 2021, 173: 105900.
FAKHRI S, IRANPANAH A, GRAVANDI M M, et al. Natural products attenuate PI3K/Akt/mTOR signaling pathway:A promising strategy in regulating neurodegeneration[J]. Phytomedicine, 2021, 91: 153664.
CHONG Z Z, SHANG Y C, WANG S,et al. A Critical Kinase Cascade in Neurological Disorders:PI3-K, Akt, and mTOR[J]. Future Neurol, 2012, 7(6): 733-748.
CHENG Y C, HSIEH F Y, CHIANG M C, et al. Akt1 mediates neuronal differentiation in zebrafish via a reciprocal interaction with notch signaling[J]. PLoS One, 2013, 8(1): e54262.
MAIESE K. Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders[J]. Br J Clin Pharmacol, 2016, 82(5): 1245-1266.
WANG S J, OMORI N, LI F,et al. Enhanced expression of phospho-Akt by electro-acupuncture in normal rat brain[J]. Neurol Res, 2002, 24(7): 719-724.
0
Views
790
下载量
0
CSCD
2
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution